doi: 10.3934/dcdsb.2020364

Traveling waves in quadratic autocatalytic systems with complexing agent

1. 

Department of Applied Mathematics, National Chiao Tung University, No. 1001, Ta Hsueh Road, Hsinchu 300093, Taiwan

2. 

Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland

* Corresponding author: Bogdan Kazmierczak

Dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas

Received  October 06, 2020 Revised  October 25, 2020 Published  December 2020

The quadratic autocatalytic reaction forms a key step in a number of chemical reaction systems, and traveling waves are observed in such systems. In this study, we investigate the effect of complexation reactions on traveling waves in the quadratic autocatalytic reaction system. More precisely, under the assumption that the complexation reaction is fast relative to the autocatalytic reaction, we show that the governing system is reduced to a two-component reaction-diffusion system with density-dependent diffusivity. Further, the numerical evidence suggests that for some parameter values, a traveling wave solution of this reduced two-component system is nonlinearly selected. This is contrast to that associated with the quadratic autocatalytic reaction (without complexation reactions).

Citation: Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020364
References:
[1]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion coefficient. I. Permanent form travelling waves, Phil. Trans. R. Soc. A, 334 (1991), 1-24. doi: 10.1098/rsta.1991.0001.  Google Scholar

[2]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. â…¢. Large time development in quadratic autocatalysis, Quart. Appl. Math, 50 (1992), 343-372. doi: 10.1090/qam/1162280.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[4]

B. Kaźmierczak and Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., 62 (2011), 1-38. doi: 10.1007/s00285-009-0323-2.  Google Scholar

[5]

B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912.  doi: 10.1142/S0218202508002899.  Google Scholar

[6]

J. H. Merkin and H. Ševčíková, Reaction fronts in an ionic autocatalytic system with an applied electric field, J.Math. Chem., 25 (1999), 111-132. doi: 10.1023/A: 1019124231138.  Google Scholar

[7]

J. H. Merkin and H. Ševčíková, The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields, IMA J. Appl. Math., 70 (2005), 527-549. doi: 10.1093/imamat/hxh045.  Google Scholar

[8]

J. H. Merkin and H. Ševčíková, D. Snita, The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system, IMA J. Appl. Math., 64 (2000), 157-188. Google Scholar

[9]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[10]

J. H. Merkin and D. J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system, J. Engng. Math., 23 (1989), 343-356. doi: 10.1007/BF00128907.  Google Scholar

show all references

References:
[1]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion coefficient. I. Permanent form travelling waves, Phil. Trans. R. Soc. A, 334 (1991), 1-24. doi: 10.1098/rsta.1991.0001.  Google Scholar

[2]

J. Billingham and D. J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. â…¢. Large time development in quadratic autocatalysis, Quart. Appl. Math, 50 (1992), 343-372. doi: 10.1090/qam/1162280.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[4]

B. Kaźmierczak and Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., 62 (2011), 1-38. doi: 10.1007/s00285-009-0323-2.  Google Scholar

[5]

B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912.  doi: 10.1142/S0218202508002899.  Google Scholar

[6]

J. H. Merkin and H. Ševčíková, Reaction fronts in an ionic autocatalytic system with an applied electric field, J.Math. Chem., 25 (1999), 111-132. doi: 10.1023/A: 1019124231138.  Google Scholar

[7]

J. H. Merkin and H. Ševčíková, The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields, IMA J. Appl. Math., 70 (2005), 527-549. doi: 10.1093/imamat/hxh045.  Google Scholar

[8]

J. H. Merkin and H. Ševčíková, D. Snita, The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system, IMA J. Appl. Math., 64 (2000), 157-188. Google Scholar

[9]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[10]

J. H. Merkin and D. J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system, J. Engng. Math., 23 (1989), 343-356. doi: 10.1007/BF00128907.  Google Scholar

Figure 1.  Time-evolution of the solution $ (A, B) $ of system (1.9) with $ L = 1600 $. The initial data is that $ A_0(x) = 1\; (0 \leq x \leq L) $, and $ B_0(x) = 0\; (20 \leq x \leq L) $ and $ 1\; (0 \leq x < 20) $. Here the parameters are $ d = 2, K = 2 $, and $ \sigma = 4 $
Figure 2.  The dependence of wave speed $ v_m $ on $ \sigma $. The parameter $ K = 2 $ and the diffusivity parameter $ d $ is $ 0.5 $, $ 1 $, $ 2 $ and $ 4 $ for panels (a), (b), (c) and (d), respectively
[1]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[5]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[6]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[7]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[8]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[9]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[10]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[11]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[12]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[13]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[14]

Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022

[15]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[16]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[17]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[18]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[19]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[20]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (20)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]