• Previous Article
    The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration
  • DCDS-B Home
  • This Issue
  • Next Article
    On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas
April  2021, 26(4): 2037-2053. doi: 10.3934/dcdsb.2020365

Asymptotic dynamics of hermitian Riccati difference equations

1. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, 811, Taiwan

2. 

Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan

* Corresponding author: Huey-Er Lin

(dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas)

Received  October 2020 Revised  November 2020 Published  April 2021 Early access  December 2020

In this paper, we consider the hermitian Riccati difference equations. Analogous to a Riccati differential equation, there is a connection between a Riccati difference equation and its associated linear difference equation. Based on the linear difference equation, we can obtain an explicit representation for the solution of the Riccati difference equation and define the extended solution. Further, we can characterize the asymptotic state of the extended solution and the rate of convergence. Constant equilibrium solutions, periodic solutions and closed limit cycles are exhibited in the investigation of asymptotic behavior of the hermitian Riccati difference equations.

Citation: Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365
References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations: In Control and Systems Theory, Birkhauser, Basel, 2003. doi: 10.1007/978-3-0348-8081-7.

[2]

R. R. Bitmead and M. R. Gevers, Riccati Difference and Differential Equations: Convergence, Monotonicity and Stability, In: S. Bittanti et al. (Ed.) The Riccati Equation, Berlin, Springer Verlag, 1991.

[3]

P. E. Caines and D. Q. Mayne, On the discrete time matrix Riccati equation of optimal control, Int. J. Control, 12 (1970), 785-794.  doi: 10.1080/00207177008931892.

[4]

S. W. ChanG. C. Goodwin and K. S. Sin, Convergence properties of the Riccati difference equation in optimal filtering of nonstabilizable systems, IEEE Trans. Automal. Contr., 29 (1984), 110-118.  doi: 10.1109/TAC.1984.1103465.

[5]

D. J. Clement and B. D. O. Anderson, Polynomial factorization via the Riccati equation, SIAM J. Appl. Math., 31 (1976), 179-205.  doi: 10.1137/0131017.

[6]

G. Freiling and V. Ionescu, Nonsymmetric discrete-time difference and algebraic Riccati equations: Some representation formulae and comments, Dynam Systems Appl., 8 (1999), 421-437. 

[7]

G. Freiling and A. Hochhaus, Convergence and existence results for continuous- and discrete-time Riccati equations, Result.Math., 42 (2002), 252-276.  doi: 10.1007/BF03322854.

[8]

A. Gorodnik, Dynamical Systems and Ergodic Theory, Lecture Notes.

[9] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511840371.
[10]

V. Kučera, The discrete Riccati equation of optimal control, Kybernetika, 8 (1972), 430-447. 

[11]

Y. C. KuoH. E. Lin and S. F. Shieh, Time-asymptotic dynamics of hermitian riccati differential equations, Taiwanese J. Math., 24 (2020), 131-158.  doi: 10.11650/tjm/190605.

[12] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford, Clarendon Press, 1995. 
[13]

W. W. LinV. Mehrmann and H. Xu, Canonical forms for Hamiltonian and symplectic matrices and pencils, Linear Algebra and Appl., 302/303 (1999), 469-533.  doi: 10.1016/S0024-3795(99)00191-3.

[14]

H. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic Riccati equation, J. Math. Est. and Contr., 5 (1995), 445-457. 

show all references

References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations: In Control and Systems Theory, Birkhauser, Basel, 2003. doi: 10.1007/978-3-0348-8081-7.

[2]

R. R. Bitmead and M. R. Gevers, Riccati Difference and Differential Equations: Convergence, Monotonicity and Stability, In: S. Bittanti et al. (Ed.) The Riccati Equation, Berlin, Springer Verlag, 1991.

[3]

P. E. Caines and D. Q. Mayne, On the discrete time matrix Riccati equation of optimal control, Int. J. Control, 12 (1970), 785-794.  doi: 10.1080/00207177008931892.

[4]

S. W. ChanG. C. Goodwin and K. S. Sin, Convergence properties of the Riccati difference equation in optimal filtering of nonstabilizable systems, IEEE Trans. Automal. Contr., 29 (1984), 110-118.  doi: 10.1109/TAC.1984.1103465.

[5]

D. J. Clement and B. D. O. Anderson, Polynomial factorization via the Riccati equation, SIAM J. Appl. Math., 31 (1976), 179-205.  doi: 10.1137/0131017.

[6]

G. Freiling and V. Ionescu, Nonsymmetric discrete-time difference and algebraic Riccati equations: Some representation formulae and comments, Dynam Systems Appl., 8 (1999), 421-437. 

[7]

G. Freiling and A. Hochhaus, Convergence and existence results for continuous- and discrete-time Riccati equations, Result.Math., 42 (2002), 252-276.  doi: 10.1007/BF03322854.

[8]

A. Gorodnik, Dynamical Systems and Ergodic Theory, Lecture Notes.

[9] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511840371.
[10]

V. Kučera, The discrete Riccati equation of optimal control, Kybernetika, 8 (1972), 430-447. 

[11]

Y. C. KuoH. E. Lin and S. F. Shieh, Time-asymptotic dynamics of hermitian riccati differential equations, Taiwanese J. Math., 24 (2020), 131-158.  doi: 10.11650/tjm/190605.

[12] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford, Clarendon Press, 1995. 
[13]

W. W. LinV. Mehrmann and H. Xu, Canonical forms for Hamiltonian and symplectic matrices and pencils, Linear Algebra and Appl., 302/303 (1999), 469-533.  doi: 10.1016/S0024-3795(99)00191-3.

[14]

H. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic Riccati equation, J. Math. Est. and Contr., 5 (1995), 445-457. 

[1]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[2]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[3]

Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

[4]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[5]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[6]

Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074

[7]

Wei-guo Wang, Wei-chao Wang, Ren-cang Li. Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 491-518. doi: 10.3934/naco.2013.3.491

[8]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[9]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[10]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[11]

Ewa Schmeidel, Robert Jankowski. Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2691-2696. doi: 10.3934/dcdsb.2014.19.2691

[12]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, 2021, 29 (5) : 3121-3139. doi: 10.3934/era.2021029

[13]

Gennadi M. Henkin, Victor M. Polterovich. A difference-differential analogue of the Burgers equations and some models of economic development. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 697-728. doi: 10.3934/dcds.1999.5.697

[14]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[15]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[16]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[17]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[18]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[19]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[20]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (229)
  • HTML views (112)
  • Cited by (0)

Other articles
by authors

[Back to Top]