• Previous Article
    Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters
  • DCDS-B Home
  • This Issue
  • Next Article
    Optimal control strategies for an online game addiction model with low and high risk exposure
doi: 10.3934/dcdsb.2020366

The effect of surface pattern property on the advancing motion of three-dimensional droplets

1. 

School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China

2. 

School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China

3. 

Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

* Corresponding author

Received  December 2017 Revised  October 2020 Published  December 2020

We investigate numerically the advancing motion of 3D droplets spreading on physically flat chemically heterogeneous surfaces with periodic structures. We use the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions to model the motion of droplets. Based on a convex splitting scheme, we have done numerical simulations and compared the results between different surface patterns quantitatively. We study the effect of pattern property on the advancing motion of three phase contact lines, the critical volume at the contact line jump and the effective advancing angles. By increasing the volume of droplet slowly on heterogeneous surfaces with different pattern property, we find that the advancing contact line approaches an equiangular octagon for the patterned surface with periodic squares separated by channels and approaches a regular hexagon for the patterned surface with periodic circles in regular hexagonal arrays. The shape of three-phase contact line is much more determined by the macro structure of the pattern than the micro structure of the pattern in each period.

Citation: Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020366
References:
[1]

S. BrandonN. HaimovichE. Yeger and A. Marmur, Partial wetting of chemically patterned surfaces: The effect of drop size, J. Colloid Interf. Sci., 263 (2003), 237-243.   Google Scholar

[2]

S. Brandon and A. Marmur, Simulation of contact angle hysteresis on chemically heterogeneous surfaces, J. Colloid Interf. Sci., 183 (1996), 351-355.   Google Scholar

[3]

S. BrandonA. Wachs and A. Marmur, Simulated contact angle hysteresis of a three-dimensional drop on a chemically heterogeneous surface: A numerical example, J. Colloid Interf. Sci., 191 (1997), 110-116.   Google Scholar

[4]

A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551.  doi: 10.1039/tf9444000546.  Google Scholar

[5]

D. ChatainD. LewisJ.-P. Baland and W. C. Carter, Numerical analysis of the shapes and energies of droplets on micropatterned substrates, Langmuir, 22 (2006), 4237-4243.  doi: 10.1021/la053146q.  Google Scholar

[6]

P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[7]

M. Gao and X.-P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386.  doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[8]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅰ. The dynamics of contact lines, Contin. Mech. Thermodyn., 15 (2003), 581-596.  doi: 10.1007/s00161-003-0136-2.  Google Scholar

[9]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅱ. The contact angle hysteresis, Contin. Mech. Thermodyn., 15 (2003), 597-611.  doi: 10.1007/s00161-003-0137-1.  Google Scholar

[10]

M. Iwamatsu, Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces, J. Colloid Interf. Sci., 297 (2006), 772-777.  doi: 10.1016/j.jcis.2005.11.032.  Google Scholar

[11]

J. F. Joanny and P. G. de Gennes, A model for contact angle hysteresis, J. Chem. Phys., 81 (1984), 552-562.  doi: 10.1142/9789812564849_0048.  Google Scholar

[12]

R. E. Johnson and R. H. Dettre, Contact-angle hysteresis. 3. study of an idealized heterogeneous surface, J. Phys. Chem., 68 (1964), 1744-1749.  doi: 10.1021/j100789a012.  Google Scholar

[13]

H. Kusumaatmaja and J. M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces, Langmuir, 23 (2007), 6019-6032.  doi: 10.1021/la063218t.  Google Scholar

[14]

S. T. Larsen and R. Taboryski, A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces, Langmuir, 25 (2009), 1282-1284.  doi: 10.1021/la8030045.  Google Scholar

[15]

L. LuoX.-P. Wang and X.-C. Cai, An efficient finite element method for simulation of droplet spreading on a topologically rough surface, J. Comput. Phys., 349 (2017), 233-252.  doi: 10.1016/j.jcp.2017.08.010.  Google Scholar

[16]

A. Marmur, Contact-angle hysteresis on heterogeneous smooth surfaces, J. Colloid Interf. Sci., 168 (1994), 40-46.  doi: 10.1006/jcis.1994.1391.  Google Scholar

[17]

T. Qian, X. P. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306. doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[18]

W. Ren, Wetting transition on patterned surfaces: Transition states and energy barriers, Langmuir, 30 (2014), 2879-2885.  doi: 10.1021/la404518q.  Google Scholar

[19]

L. W. Schwartz and S. Garoff, Contact angle hysteresis on heterogeneous surfaces, Langmuir, 1 (1985), 219-230.  doi: 10.1021/la00062a007.  Google Scholar

[20]

L. W. Schwartz and S. Garoff, Contact angle hysteresis and the shape of the 3-phase line, J. Colloid Interf. Sci., 106 (1985), 422-437.  doi: 10.1016/S0021-9797(85)80016-3.  Google Scholar

[21]

P. S. Swain and R. Lipowsky, Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws, Langmuir, 14 (1998), 6772-6780.  doi: 10.1021/la980602k.  Google Scholar

[22]

X.-P. WangT. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78.  doi: 10.1017/S0022112008001456.  Google Scholar

[23]

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994.  doi: 10.1021/ie50320a024.  Google Scholar

[24]

G. Wolansky and A. Marmur, The actual contact angle on a heterogeneous rough surface in three dimensions, Langmuir, 14 (1998), 5292-5297.  doi: 10.1021/la960723p.  Google Scholar

[25]

X. Xu, Analysis for wetting on rough surfaces by a three-dimensional phase field model, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2839-2850.  doi: 10.3934/dcdsb.2016075.  Google Scholar

[26]

X. Xu and X. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593.  Google Scholar

[27]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.  doi: 10.1098/rstl.1805.0005.  Google Scholar

[28]

H. ZhongX.-P. WangA. Salama and S. Sun, Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes, Comput. Math. Appl., 68 (2014), 1905-1914.  doi: 10.1016/j.camwa.2014.10.004.  Google Scholar

[29]

H. ZhongX.-P. Wang and S. Sun, A numerical study of three-dimensional droplets spreading on chemically patterned surfaces, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2905-2926.  doi: 10.3934/dcdsb.2016079.  Google Scholar

show all references

References:
[1]

S. BrandonN. HaimovichE. Yeger and A. Marmur, Partial wetting of chemically patterned surfaces: The effect of drop size, J. Colloid Interf. Sci., 263 (2003), 237-243.   Google Scholar

[2]

S. Brandon and A. Marmur, Simulation of contact angle hysteresis on chemically heterogeneous surfaces, J. Colloid Interf. Sci., 183 (1996), 351-355.   Google Scholar

[3]

S. BrandonA. Wachs and A. Marmur, Simulated contact angle hysteresis of a three-dimensional drop on a chemically heterogeneous surface: A numerical example, J. Colloid Interf. Sci., 191 (1997), 110-116.   Google Scholar

[4]

A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551.  doi: 10.1039/tf9444000546.  Google Scholar

[5]

D. ChatainD. LewisJ.-P. Baland and W. C. Carter, Numerical analysis of the shapes and energies of droplets on micropatterned substrates, Langmuir, 22 (2006), 4237-4243.  doi: 10.1021/la053146q.  Google Scholar

[6]

P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[7]

M. Gao and X.-P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386.  doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[8]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅰ. The dynamics of contact lines, Contin. Mech. Thermodyn., 15 (2003), 581-596.  doi: 10.1007/s00161-003-0136-2.  Google Scholar

[9]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅱ. The contact angle hysteresis, Contin. Mech. Thermodyn., 15 (2003), 597-611.  doi: 10.1007/s00161-003-0137-1.  Google Scholar

[10]

M. Iwamatsu, Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces, J. Colloid Interf. Sci., 297 (2006), 772-777.  doi: 10.1016/j.jcis.2005.11.032.  Google Scholar

[11]

J. F. Joanny and P. G. de Gennes, A model for contact angle hysteresis, J. Chem. Phys., 81 (1984), 552-562.  doi: 10.1142/9789812564849_0048.  Google Scholar

[12]

R. E. Johnson and R. H. Dettre, Contact-angle hysteresis. 3. study of an idealized heterogeneous surface, J. Phys. Chem., 68 (1964), 1744-1749.  doi: 10.1021/j100789a012.  Google Scholar

[13]

H. Kusumaatmaja and J. M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces, Langmuir, 23 (2007), 6019-6032.  doi: 10.1021/la063218t.  Google Scholar

[14]

S. T. Larsen and R. Taboryski, A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces, Langmuir, 25 (2009), 1282-1284.  doi: 10.1021/la8030045.  Google Scholar

[15]

L. LuoX.-P. Wang and X.-C. Cai, An efficient finite element method for simulation of droplet spreading on a topologically rough surface, J. Comput. Phys., 349 (2017), 233-252.  doi: 10.1016/j.jcp.2017.08.010.  Google Scholar

[16]

A. Marmur, Contact-angle hysteresis on heterogeneous smooth surfaces, J. Colloid Interf. Sci., 168 (1994), 40-46.  doi: 10.1006/jcis.1994.1391.  Google Scholar

[17]

T. Qian, X. P. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306. doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[18]

W. Ren, Wetting transition on patterned surfaces: Transition states and energy barriers, Langmuir, 30 (2014), 2879-2885.  doi: 10.1021/la404518q.  Google Scholar

[19]

L. W. Schwartz and S. Garoff, Contact angle hysteresis on heterogeneous surfaces, Langmuir, 1 (1985), 219-230.  doi: 10.1021/la00062a007.  Google Scholar

[20]

L. W. Schwartz and S. Garoff, Contact angle hysteresis and the shape of the 3-phase line, J. Colloid Interf. Sci., 106 (1985), 422-437.  doi: 10.1016/S0021-9797(85)80016-3.  Google Scholar

[21]

P. S. Swain and R. Lipowsky, Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws, Langmuir, 14 (1998), 6772-6780.  doi: 10.1021/la980602k.  Google Scholar

[22]

X.-P. WangT. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78.  doi: 10.1017/S0022112008001456.  Google Scholar

[23]

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994.  doi: 10.1021/ie50320a024.  Google Scholar

[24]

G. Wolansky and A. Marmur, The actual contact angle on a heterogeneous rough surface in three dimensions, Langmuir, 14 (1998), 5292-5297.  doi: 10.1021/la960723p.  Google Scholar

[25]

X. Xu, Analysis for wetting on rough surfaces by a three-dimensional phase field model, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2839-2850.  doi: 10.3934/dcdsb.2016075.  Google Scholar

[26]

X. Xu and X. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593.  Google Scholar

[27]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.  doi: 10.1098/rstl.1805.0005.  Google Scholar

[28]

H. ZhongX.-P. WangA. Salama and S. Sun, Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes, Comput. Math. Appl., 68 (2014), 1905-1914.  doi: 10.1016/j.camwa.2014.10.004.  Google Scholar

[29]

H. ZhongX.-P. Wang and S. Sun, A numerical study of three-dimensional droplets spreading on chemically patterned surfaces, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2905-2926.  doi: 10.3934/dcdsb.2016079.  Google Scholar

Figure 1.  Schematic diagram of a flat surface with a ring pattern
Figure 2.  A spherical cap
Figure 3.  Schematic diagram of physically flat surfaces with square-channel like pattern (upper), circular patches in square arrays (middle) and in regular hexagonal arrays (lower)
Figure 4.  Effective advancing angle versus Young's angle of channel with Young's angle of square $ 60^\circ $
Figure 5.  Advancing contact line and cubic root of critical volume with $ a:b = 12:5, \theta_a:\theta_b = 60^\circ:100^\circ $
Figure 6.  Advancing contact line (part) and cubic root of critical volume with $ a:b = 12:5, \theta_a:\theta_b = 60^\circ:110^\circ $
Figure 7.  Advancing contact line and cubic root of critical volume with $ a:b = 12:5, \theta_a:\theta_b = 60^\circ:120^\circ $
Figure 8.  Advancing contact line and cubic root of critical volume with $ a:b = 12:12, \theta_a:\theta_b = 60^\circ:110^\circ $
Figure 9.  Circle pattern in square arrays and in regular hexagon arrays
[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[3]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[4]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[5]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[6]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[7]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[8]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[9]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[10]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[11]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[12]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[13]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[14]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[15]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[16]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[17]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[18]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[19]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[20]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (12)
  • HTML views (62)
  • Cited by (0)

Other articles
by authors

[Back to Top]