doi: 10.3934/dcdsb.2020366

The effect of surface pattern property on the advancing motion of three-dimensional droplets

1. 

School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China

2. 

School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China

3. 

Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

* Corresponding author

Received  December 2017 Revised  October 2020 Published  December 2020

We investigate numerically the advancing motion of 3D droplets spreading on physically flat chemically heterogeneous surfaces with periodic structures. We use the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions to model the motion of droplets. Based on a convex splitting scheme, we have done numerical simulations and compared the results between different surface patterns quantitatively. We study the effect of pattern property on the advancing motion of three phase contact lines, the critical volume at the contact line jump and the effective advancing angles. By increasing the volume of droplet slowly on heterogeneous surfaces with different pattern property, we find that the advancing contact line approaches an equiangular octagon for the patterned surface with periodic squares separated by channels and approaches a regular hexagon for the patterned surface with periodic circles in regular hexagonal arrays. The shape of three-phase contact line is much more determined by the macro structure of the pattern than the micro structure of the pattern in each period.

Citation: Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020366
References:
[1]

S. BrandonN. HaimovichE. Yeger and A. Marmur, Partial wetting of chemically patterned surfaces: The effect of drop size, J. Colloid Interf. Sci., 263 (2003), 237-243.   Google Scholar

[2]

S. Brandon and A. Marmur, Simulation of contact angle hysteresis on chemically heterogeneous surfaces, J. Colloid Interf. Sci., 183 (1996), 351-355.   Google Scholar

[3]

S. BrandonA. Wachs and A. Marmur, Simulated contact angle hysteresis of a three-dimensional drop on a chemically heterogeneous surface: A numerical example, J. Colloid Interf. Sci., 191 (1997), 110-116.   Google Scholar

[4]

A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551.  doi: 10.1039/tf9444000546.  Google Scholar

[5]

D. ChatainD. LewisJ.-P. Baland and W. C. Carter, Numerical analysis of the shapes and energies of droplets on micropatterned substrates, Langmuir, 22 (2006), 4237-4243.  doi: 10.1021/la053146q.  Google Scholar

[6]

P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[7]

M. Gao and X.-P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386.  doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[8]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅰ. The dynamics of contact lines, Contin. Mech. Thermodyn., 15 (2003), 581-596.  doi: 10.1007/s00161-003-0136-2.  Google Scholar

[9]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅱ. The contact angle hysteresis, Contin. Mech. Thermodyn., 15 (2003), 597-611.  doi: 10.1007/s00161-003-0137-1.  Google Scholar

[10]

M. Iwamatsu, Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces, J. Colloid Interf. Sci., 297 (2006), 772-777.  doi: 10.1016/j.jcis.2005.11.032.  Google Scholar

[11]

J. F. Joanny and P. G. de Gennes, A model for contact angle hysteresis, J. Chem. Phys., 81 (1984), 552-562.  doi: 10.1142/9789812564849_0048.  Google Scholar

[12]

R. E. Johnson and R. H. Dettre, Contact-angle hysteresis. 3. study of an idealized heterogeneous surface, J. Phys. Chem., 68 (1964), 1744-1749.  doi: 10.1021/j100789a012.  Google Scholar

[13]

H. Kusumaatmaja and J. M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces, Langmuir, 23 (2007), 6019-6032.  doi: 10.1021/la063218t.  Google Scholar

[14]

S. T. Larsen and R. Taboryski, A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces, Langmuir, 25 (2009), 1282-1284.  doi: 10.1021/la8030045.  Google Scholar

[15]

L. LuoX.-P. Wang and X.-C. Cai, An efficient finite element method for simulation of droplet spreading on a topologically rough surface, J. Comput. Phys., 349 (2017), 233-252.  doi: 10.1016/j.jcp.2017.08.010.  Google Scholar

[16]

A. Marmur, Contact-angle hysteresis on heterogeneous smooth surfaces, J. Colloid Interf. Sci., 168 (1994), 40-46.  doi: 10.1006/jcis.1994.1391.  Google Scholar

[17]

T. Qian, X. P. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306. doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[18]

W. Ren, Wetting transition on patterned surfaces: Transition states and energy barriers, Langmuir, 30 (2014), 2879-2885.  doi: 10.1021/la404518q.  Google Scholar

[19]

L. W. Schwartz and S. Garoff, Contact angle hysteresis on heterogeneous surfaces, Langmuir, 1 (1985), 219-230.  doi: 10.1021/la00062a007.  Google Scholar

[20]

L. W. Schwartz and S. Garoff, Contact angle hysteresis and the shape of the 3-phase line, J. Colloid Interf. Sci., 106 (1985), 422-437.  doi: 10.1016/S0021-9797(85)80016-3.  Google Scholar

[21]

P. S. Swain and R. Lipowsky, Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws, Langmuir, 14 (1998), 6772-6780.  doi: 10.1021/la980602k.  Google Scholar

[22]

X.-P. WangT. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78.  doi: 10.1017/S0022112008001456.  Google Scholar

[23]

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994.  doi: 10.1021/ie50320a024.  Google Scholar

[24]

G. Wolansky and A. Marmur, The actual contact angle on a heterogeneous rough surface in three dimensions, Langmuir, 14 (1998), 5292-5297.  doi: 10.1021/la960723p.  Google Scholar

[25]

X. Xu, Analysis for wetting on rough surfaces by a three-dimensional phase field model, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2839-2850.  doi: 10.3934/dcdsb.2016075.  Google Scholar

[26]

X. Xu and X. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593.  Google Scholar

[27]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.  doi: 10.1098/rstl.1805.0005.  Google Scholar

[28]

H. ZhongX.-P. WangA. Salama and S. Sun, Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes, Comput. Math. Appl., 68 (2014), 1905-1914.  doi: 10.1016/j.camwa.2014.10.004.  Google Scholar

[29]

H. ZhongX.-P. Wang and S. Sun, A numerical study of three-dimensional droplets spreading on chemically patterned surfaces, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2905-2926.  doi: 10.3934/dcdsb.2016079.  Google Scholar

show all references

References:
[1]

S. BrandonN. HaimovichE. Yeger and A. Marmur, Partial wetting of chemically patterned surfaces: The effect of drop size, J. Colloid Interf. Sci., 263 (2003), 237-243.   Google Scholar

[2]

S. Brandon and A. Marmur, Simulation of contact angle hysteresis on chemically heterogeneous surfaces, J. Colloid Interf. Sci., 183 (1996), 351-355.   Google Scholar

[3]

S. BrandonA. Wachs and A. Marmur, Simulated contact angle hysteresis of a three-dimensional drop on a chemically heterogeneous surface: A numerical example, J. Colloid Interf. Sci., 191 (1997), 110-116.   Google Scholar

[4]

A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551.  doi: 10.1039/tf9444000546.  Google Scholar

[5]

D. ChatainD. LewisJ.-P. Baland and W. C. Carter, Numerical analysis of the shapes and energies of droplets on micropatterned substrates, Langmuir, 22 (2006), 4237-4243.  doi: 10.1021/la053146q.  Google Scholar

[6]

P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[7]

M. Gao and X.-P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386.  doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[8]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅰ. The dynamics of contact lines, Contin. Mech. Thermodyn., 15 (2003), 581-596.  doi: 10.1007/s00161-003-0136-2.  Google Scholar

[9]

H. Gouin, The wetting problem of fluids on solid surfaces. Ⅱ. The contact angle hysteresis, Contin. Mech. Thermodyn., 15 (2003), 597-611.  doi: 10.1007/s00161-003-0137-1.  Google Scholar

[10]

M. Iwamatsu, Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces, J. Colloid Interf. Sci., 297 (2006), 772-777.  doi: 10.1016/j.jcis.2005.11.032.  Google Scholar

[11]

J. F. Joanny and P. G. de Gennes, A model for contact angle hysteresis, J. Chem. Phys., 81 (1984), 552-562.  doi: 10.1142/9789812564849_0048.  Google Scholar

[12]

R. E. Johnson and R. H. Dettre, Contact-angle hysteresis. 3. study of an idealized heterogeneous surface, J. Phys. Chem., 68 (1964), 1744-1749.  doi: 10.1021/j100789a012.  Google Scholar

[13]

H. Kusumaatmaja and J. M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces, Langmuir, 23 (2007), 6019-6032.  doi: 10.1021/la063218t.  Google Scholar

[14]

S. T. Larsen and R. Taboryski, A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces, Langmuir, 25 (2009), 1282-1284.  doi: 10.1021/la8030045.  Google Scholar

[15]

L. LuoX.-P. Wang and X.-C. Cai, An efficient finite element method for simulation of droplet spreading on a topologically rough surface, J. Comput. Phys., 349 (2017), 233-252.  doi: 10.1016/j.jcp.2017.08.010.  Google Scholar

[16]

A. Marmur, Contact-angle hysteresis on heterogeneous smooth surfaces, J. Colloid Interf. Sci., 168 (1994), 40-46.  doi: 10.1006/jcis.1994.1391.  Google Scholar

[17]

T. Qian, X. P. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306. doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[18]

W. Ren, Wetting transition on patterned surfaces: Transition states and energy barriers, Langmuir, 30 (2014), 2879-2885.  doi: 10.1021/la404518q.  Google Scholar

[19]

L. W. Schwartz and S. Garoff, Contact angle hysteresis on heterogeneous surfaces, Langmuir, 1 (1985), 219-230.  doi: 10.1021/la00062a007.  Google Scholar

[20]

L. W. Schwartz and S. Garoff, Contact angle hysteresis and the shape of the 3-phase line, J. Colloid Interf. Sci., 106 (1985), 422-437.  doi: 10.1016/S0021-9797(85)80016-3.  Google Scholar

[21]

P. S. Swain and R. Lipowsky, Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws, Langmuir, 14 (1998), 6772-6780.  doi: 10.1021/la980602k.  Google Scholar

[22]

X.-P. WangT. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78.  doi: 10.1017/S0022112008001456.  Google Scholar

[23]

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994.  doi: 10.1021/ie50320a024.  Google Scholar

[24]

G. Wolansky and A. Marmur, The actual contact angle on a heterogeneous rough surface in three dimensions, Langmuir, 14 (1998), 5292-5297.  doi: 10.1021/la960723p.  Google Scholar

[25]

X. Xu, Analysis for wetting on rough surfaces by a three-dimensional phase field model, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2839-2850.  doi: 10.3934/dcdsb.2016075.  Google Scholar

[26]

X. Xu and X. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593.  Google Scholar

[27]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.  doi: 10.1098/rstl.1805.0005.  Google Scholar

[28]

H. ZhongX.-P. WangA. Salama and S. Sun, Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes, Comput. Math. Appl., 68 (2014), 1905-1914.  doi: 10.1016/j.camwa.2014.10.004.  Google Scholar

[29]

H. ZhongX.-P. Wang and S. Sun, A numerical study of three-dimensional droplets spreading on chemically patterned surfaces, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2905-2926.  doi: 10.3934/dcdsb.2016079.  Google Scholar

Figure 1.  Schematic diagram of a flat surface with a ring pattern
Figure 2.  A spherical cap
Figure 3.  Schematic diagram of physically flat surfaces with square-channel like pattern (upper), circular patches in square arrays (middle) and in regular hexagonal arrays (lower)
Figure 4.  Effective advancing angle versus Young's angle of channel with Young's angle of square $ 60^\circ $
Figure 5.  Advancing contact line and cubic root of critical volume with $ a:b = 12:5, \theta_a:\theta_b = 60^\circ:100^\circ $
Figure 6.  Advancing contact line (part) and cubic root of critical volume with $ a:b = 12:5, \theta_a:\theta_b = 60^\circ:110^\circ $
Figure 7.  Advancing contact line and cubic root of critical volume with $ a:b = 12:5, \theta_a:\theta_b = 60^\circ:120^\circ $
Figure 8.  Advancing contact line and cubic root of critical volume with $ a:b = 12:12, \theta_a:\theta_b = 60^\circ:110^\circ $
Figure 9.  Circle pattern in square arrays and in regular hexagon arrays
[1]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[2]

Hirokazu Saito, Xin Zhang. Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021051

[3]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[4]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[5]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[6]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[7]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[8]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[9]

Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021024

[10]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[11]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[12]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[13]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[14]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[15]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[16]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[17]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[18]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[19]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[20]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]