October  2021, 26(10): 5567-5579. doi: 10.3934/dcdsb.2020367

Strong convergence rates for markovian representations of fractional processes

Department of Mathematical Stochastics, University of Freiburg, Germany

Received  February 2019 Revised  August 2020 Published  October 2021 Early access  December 2020

Fund Project: The author gratefully acknowledges support in the form of a Junior Fellowship of the Freiburg Institute of Advances Studies

Many fractional processes can be represented as an integral over a family of Ornstein–Uhlenbeck processes. This representation naturally lends itself to numerical discretizations, which are shown in this paper to have strong convergence rates of arbitrarily high polynomial order. This explains the potential, but also some limitations of such representations as the basis of Monte Carlo schemes for fractional volatility models such as the rough Bergomi model.

Citation: Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5567-5579. doi: 10.3934/dcdsb.2020367
References:
[1]

E. Abi Jaber, Lifting the Heston model, Quantitative Finance, 19 (2019), 1995-2013.  doi: 10.1080/14697688.2019.1615113.  Google Scholar

[2]

E. Abi Jaber and O. El Euch, Markovian structure of the Volterra Heston model, Statistics & Probability Letters, 149 (2019), 63-72.  doi: 10.1016/j.spl.2019.01.024.  Google Scholar

[3]

E. Abi Jaber and O. El Euch, Multifactor approximation of rough volatility models, SIAM Journal on Financial Mathematics, 10 (2019), 309-349.  doi: 10.1137/18M1170236.  Google Scholar

[4]

E. Abi JaberM. Larsson and S. Pulido, Affine Volterra processes, The Annals of Applied Probability, 29 (2019), 3155-3200.  doi: 10.1214/19-AAP1477.  Google Scholar

[5]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition  Google Scholar

[6]

E. AlòsJ. A. León and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance and Stochastics, 11 (2007), 571-589.  doi: 10.1007/s00780-007-0049-1.  Google Scholar

[7]

C. BayerP. Friz and J. Gatheral, Pricing under rough volatility, Quantitative Finance, 16 (2016), 887-904.  doi: 10.1080/14697688.2015.1099717.  Google Scholar

[8]

C. BayerP. K. FrizP. GassiatJ. Martin and B. Stemper, A regularity structure for rough volatility, Mathematical Finance, 30 (2020), 782-832.  doi: 10.1111/mafi.12233.  Google Scholar

[9]

C. BayerP. K. FrizA. GulisashviliB. Horvath and B. Stemper, Short-time near-the-money skew in rough fractional volatility models, Quantitative Finance, 19 (2019), 779-798.  doi: 10.1080/14697688.2018.1529420.  Google Scholar

[10]

M. Beiglböck and P. Siorpaes, Pathwise versions of the Burkholder–Davis–Gundy inequality, Bernoulli, 21 (2015), 360-373.  doi: 10.3150/13-BEJ570.  Google Scholar

[11]

M. Bennedsen, A. Lunde and M. S. Pakkanen, Decoupling the short-and long-term behavior of stochastic volatility, arXiv: 1610.00332, 2016. doi: 10.2139/ssrn.2846756.  Google Scholar

[12]

M. BennedsenA. Lunde and M. S. Pakkanen, Hybrid scheme for Brownian semistationary processes, Finance and Stochastics, 21 (2017), 931-965.  doi: 10.1007/s00780-017-0335-5.  Google Scholar

[13]

H. Brass and K. Petras, Quadrature Theory, vol. 178 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/178.  Google Scholar

[14]

P. Carmona and L. Coutin, Fractional Brownian motion and the Markov property, Electronic Communications in Probability, 3 (1998), 95-107.  doi: 10.1214/ECP.v3-998.  Google Scholar

[15]

P. CarmonaL. Coutin and G. Montseny, Approximation of some Gaussian processes, Statistical Inference for Stochastic Processes, 3 (2000), 161-171.  doi: 10.1023/A:1009999518898.  Google Scholar

[16]

C. Cuchiero and J. Teichmann, Generalized Feller processes and Markovian lifts of stochastic Volterra processes: The affine case, Journal of Evolution Equations, (2020), 1–48. doi: 10.1007/s00028-020-00557-2.  Google Scholar

[17]

T. Dieker, Simulation of Fractional Brownian Motion, Master's thesis, University of Twente, 2004. Google Scholar

[18]

C. R. Dietrich and G. N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM Journal on Scientific Computing, 18 (1997), 1088-1107.  doi: 10.1137/S1064827592240555.  Google Scholar

[19]

M. Forde and H. Zhang, Asymptotics for rough stochastic volatility models, SIAM Journal on Financial Mathematics, 8 (2017), 114-145.  doi: 10.1137/15M1009330.  Google Scholar

[20]

M. Fukasawa, Asymptotic analysis for stochastic volatility: Martingale expansion, Finance and Stochastics, 15 (2011), 635-654.  doi: 10.1007/s00780-010-0136-6.  Google Scholar

[21]

M. GaßK. GlauM. Mahlstedt and M. Mair, Chebyshev interpolation for parametric option pricing, Finance and Stochastics, 22 (2018), 701-731.  doi: 10.1007/s00780-018-0361-y.  Google Scholar

[22]

M. GaßK. Glau and M. Mair, Magic points in finance: Empirical integration for parametric option pricing, SIAM Journal on Financial Mathematics, 8 (2017), 766-803.  doi: 10.1137/16M1101301.  Google Scholar

[23]

P. Gassiat, On the martingale property in the rough Bergomi model, Electronic Communications in Probability, 24 (2019), Paper No. 33, 9 pp. doi: 10.1214/19-ECP239.  Google Scholar

[24]

J. GatheralT. Jaisson and M. Rosenbaum, Volatility is rough, Quantitative Finance, 18 (2018), 933-949.  doi: 10.1080/14697688.2017.1393551.  Google Scholar

[25]

S. E. Graversen and G. Peskir, Maximal inequalities for the Ornstein–Uhlenbeck process, Proceedings of the American Mathematical Society, 128 (2000), 3035-3041.  doi: 10.1090/S0002-9939-00-05345-4.  Google Scholar

[26]

P. Harms and D. Stefanovits, Affine representations of fractional processes with applications in mathematical finance, Stochastic Processes and their Applications, 129 (2019), 1185-1228.  doi: 10.1016/j.spa.2018.04.010.  Google Scholar

[27]

B. Horvath, A. Jacquier and A. Muguruza, Functional central limit theorems for rough volatility, arXiv: 1711.03078, 2017. doi: 10.2139/ssrn.3078743.  Google Scholar

[28]

J. R. Hosking, Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20 (1984), 1898-1908.  doi: 10.1029/WR020i012p01898.  Google Scholar

[29]

T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces, vol. 67, Springer, Cham, 2017. doi: 10.1007/978-3-319-69808-3.  Google Scholar

[30]

R. McCrickerd and M. S. Pakkanen, Turbocharging Monte Carlo pricing for the rough Bergomi model, Quantitative Finance, 18 (2018), 1877–1886. doi: 10.1080/14697688.2018.1459812.  Google Scholar

[31]

A. A. Muravlev, Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process, Russian Mathematical Surveys, 66 (2011), 439-441.  doi: 10.1070/RM2011v066n02ABEH004746.  Google Scholar

[32]

L. Mytnik and T. S. Salisbury, Uniqueness for Volterra-type stochastic integral equations, arXiv: 1502.05513, 2015. Google Scholar

[33]

N. N. Vakhania, V. I. Tarieladze and S. A.Chobanyan, Probability distributions on Banach spaces, vol. 14, Springer Science & Business Media, 1987. doi: 10.1007/978-94-009-3873-1.  Google Scholar

[34]

M. Veraar, The stochastic Fubini theorem revisited, Stochastics An International Journal of Probability and Stochastic Processes, 84 (2012), 543-551.  doi: 10.1080/17442508.2011.618883.  Google Scholar

show all references

References:
[1]

E. Abi Jaber, Lifting the Heston model, Quantitative Finance, 19 (2019), 1995-2013.  doi: 10.1080/14697688.2019.1615113.  Google Scholar

[2]

E. Abi Jaber and O. El Euch, Markovian structure of the Volterra Heston model, Statistics & Probability Letters, 149 (2019), 63-72.  doi: 10.1016/j.spl.2019.01.024.  Google Scholar

[3]

E. Abi Jaber and O. El Euch, Multifactor approximation of rough volatility models, SIAM Journal on Financial Mathematics, 10 (2019), 309-349.  doi: 10.1137/18M1170236.  Google Scholar

[4]

E. Abi JaberM. Larsson and S. Pulido, Affine Volterra processes, The Annals of Applied Probability, 29 (2019), 3155-3200.  doi: 10.1214/19-AAP1477.  Google Scholar

[5]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition  Google Scholar

[6]

E. AlòsJ. A. León and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance and Stochastics, 11 (2007), 571-589.  doi: 10.1007/s00780-007-0049-1.  Google Scholar

[7]

C. BayerP. Friz and J. Gatheral, Pricing under rough volatility, Quantitative Finance, 16 (2016), 887-904.  doi: 10.1080/14697688.2015.1099717.  Google Scholar

[8]

C. BayerP. K. FrizP. GassiatJ. Martin and B. Stemper, A regularity structure for rough volatility, Mathematical Finance, 30 (2020), 782-832.  doi: 10.1111/mafi.12233.  Google Scholar

[9]

C. BayerP. K. FrizA. GulisashviliB. Horvath and B. Stemper, Short-time near-the-money skew in rough fractional volatility models, Quantitative Finance, 19 (2019), 779-798.  doi: 10.1080/14697688.2018.1529420.  Google Scholar

[10]

M. Beiglböck and P. Siorpaes, Pathwise versions of the Burkholder–Davis–Gundy inequality, Bernoulli, 21 (2015), 360-373.  doi: 10.3150/13-BEJ570.  Google Scholar

[11]

M. Bennedsen, A. Lunde and M. S. Pakkanen, Decoupling the short-and long-term behavior of stochastic volatility, arXiv: 1610.00332, 2016. doi: 10.2139/ssrn.2846756.  Google Scholar

[12]

M. BennedsenA. Lunde and M. S. Pakkanen, Hybrid scheme for Brownian semistationary processes, Finance and Stochastics, 21 (2017), 931-965.  doi: 10.1007/s00780-017-0335-5.  Google Scholar

[13]

H. Brass and K. Petras, Quadrature Theory, vol. 178 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/178.  Google Scholar

[14]

P. Carmona and L. Coutin, Fractional Brownian motion and the Markov property, Electronic Communications in Probability, 3 (1998), 95-107.  doi: 10.1214/ECP.v3-998.  Google Scholar

[15]

P. CarmonaL. Coutin and G. Montseny, Approximation of some Gaussian processes, Statistical Inference for Stochastic Processes, 3 (2000), 161-171.  doi: 10.1023/A:1009999518898.  Google Scholar

[16]

C. Cuchiero and J. Teichmann, Generalized Feller processes and Markovian lifts of stochastic Volterra processes: The affine case, Journal of Evolution Equations, (2020), 1–48. doi: 10.1007/s00028-020-00557-2.  Google Scholar

[17]

T. Dieker, Simulation of Fractional Brownian Motion, Master's thesis, University of Twente, 2004. Google Scholar

[18]

C. R. Dietrich and G. N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM Journal on Scientific Computing, 18 (1997), 1088-1107.  doi: 10.1137/S1064827592240555.  Google Scholar

[19]

M. Forde and H. Zhang, Asymptotics for rough stochastic volatility models, SIAM Journal on Financial Mathematics, 8 (2017), 114-145.  doi: 10.1137/15M1009330.  Google Scholar

[20]

M. Fukasawa, Asymptotic analysis for stochastic volatility: Martingale expansion, Finance and Stochastics, 15 (2011), 635-654.  doi: 10.1007/s00780-010-0136-6.  Google Scholar

[21]

M. GaßK. GlauM. Mahlstedt and M. Mair, Chebyshev interpolation for parametric option pricing, Finance and Stochastics, 22 (2018), 701-731.  doi: 10.1007/s00780-018-0361-y.  Google Scholar

[22]

M. GaßK. Glau and M. Mair, Magic points in finance: Empirical integration for parametric option pricing, SIAM Journal on Financial Mathematics, 8 (2017), 766-803.  doi: 10.1137/16M1101301.  Google Scholar

[23]

P. Gassiat, On the martingale property in the rough Bergomi model, Electronic Communications in Probability, 24 (2019), Paper No. 33, 9 pp. doi: 10.1214/19-ECP239.  Google Scholar

[24]

J. GatheralT. Jaisson and M. Rosenbaum, Volatility is rough, Quantitative Finance, 18 (2018), 933-949.  doi: 10.1080/14697688.2017.1393551.  Google Scholar

[25]

S. E. Graversen and G. Peskir, Maximal inequalities for the Ornstein–Uhlenbeck process, Proceedings of the American Mathematical Society, 128 (2000), 3035-3041.  doi: 10.1090/S0002-9939-00-05345-4.  Google Scholar

[26]

P. Harms and D. Stefanovits, Affine representations of fractional processes with applications in mathematical finance, Stochastic Processes and their Applications, 129 (2019), 1185-1228.  doi: 10.1016/j.spa.2018.04.010.  Google Scholar

[27]

B. Horvath, A. Jacquier and A. Muguruza, Functional central limit theorems for rough volatility, arXiv: 1711.03078, 2017. doi: 10.2139/ssrn.3078743.  Google Scholar

[28]

J. R. Hosking, Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20 (1984), 1898-1908.  doi: 10.1029/WR020i012p01898.  Google Scholar

[29]

T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces, vol. 67, Springer, Cham, 2017. doi: 10.1007/978-3-319-69808-3.  Google Scholar

[30]

R. McCrickerd and M. S. Pakkanen, Turbocharging Monte Carlo pricing for the rough Bergomi model, Quantitative Finance, 18 (2018), 1877–1886. doi: 10.1080/14697688.2018.1459812.  Google Scholar

[31]

A. A. Muravlev, Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process, Russian Mathematical Surveys, 66 (2011), 439-441.  doi: 10.1070/RM2011v066n02ABEH004746.  Google Scholar

[32]

L. Mytnik and T. S. Salisbury, Uniqueness for Volterra-type stochastic integral equations, arXiv: 1502.05513, 2015. Google Scholar

[33]

N. N. Vakhania, V. I. Tarieladze and S. A.Chobanyan, Probability distributions on Banach spaces, vol. 14, Springer Science & Business Media, 1987. doi: 10.1007/978-94-009-3873-1.  Google Scholar

[34]

M. Veraar, The stochastic Fubini theorem revisited, Stochastics An International Journal of Probability and Stochastic Processes, 84 (2012), 543-551.  doi: 10.1080/17442508.2011.618883.  Google Scholar

Figure 1.  Volterra Brownian motion of Hurst index $ H\in(0,1/2) $ can be represented as an integral $ W^H_t = \int_0^\infty Y_t(x) x^{-1/2-H}dx $ over a Gaussian random field $ Y_t(x) $. The smoothness of the random field in the spatial dimension $ x $ allows one to approximate this integral efficiently using high order quadrature rules
of quadrature intervals with fixed parameters $ H = 0.1 $, $ m = 5 $. Right: varying the Hurst index $ H\in\{0.1,0.2,0.3,0.4\}$ = with fixed parameters $ n = 40 $, $ m = 5 $">Figure 2.  Dependence of the approximations on the number $ n $ of quadrature intervals and the Hurst index $ H $. Left: varying the number $ n\in\{2,5,10,20,40\}$ = of quadrature intervals with fixed parameters $ H = 0.1 $, $ m = 5 $. Right: varying the Hurst index $ H\in\{0.1,0.2,0.3,0.4\}$ = with fixed parameters $ n = 40 $, $ m = 5 $
with $ H = 0.1 $. Right: slopes of the lines in the left plot (dots) and predicted convergence rate (line)">Figure 3.  The upper bound $ 2Hm/3 $ on the convergence rate established in Remark 6.2 for $ m $-point interpolatory quadrature closely matches the numerically observed one (here: at $ t = 1 $, computed analytically from the covariance functions of the Gaussian processes $ W^H $ and $ W^{H,n} $). Left: relative error $ e = \|W^H_1-W^{H,n}_1\|_{L^2(\Omega)}/\|W^H_1\|_{L^2(\Omega)} $ for $ m\in\{2,3,\dots,20\}$ = with $ H = 0.1 $. Right: slopes of the lines in the left plot (dots) and predicted convergence rate (line)
Table 1.  Complexity of several numerical methods for sampling a fractional process $ (W^H_{i/k})_{i\in\{1,\dots,k\}} $ with Hurst index $ H\in(0,1/2) $ at $ k $ equidistant time points
Method Structure Error Complexity
Cholesky Static 0 $ k^3 $
Hosking, Dieker [28,17] Recursive 0 $ k^2 $
Dietrich, Newsam [18] Static 0 $ k\log k $
Bennedsen, Lunde, Pakkanen [12] Recursive $ k^{-H} $ $ k \log k $
Carmona, Coutin, Montseny [15] Recursive $ \epsilon $ $ k\epsilon^{-3/(4H)} $
This paper Recursive $ \epsilon $ $ k\epsilon^{-1/r} $ for $ r\in(0,\infty) $
Method Structure Error Complexity
Cholesky Static 0 $ k^3 $
Hosking, Dieker [28,17] Recursive 0 $ k^2 $
Dietrich, Newsam [18] Static 0 $ k\log k $
Bennedsen, Lunde, Pakkanen [12] Recursive $ k^{-H} $ $ k \log k $
Carmona, Coutin, Montseny [15] Recursive $ \epsilon $ $ k\epsilon^{-3/(4H)} $
This paper Recursive $ \epsilon $ $ k\epsilon^{-1/r} $ for $ r\in(0,\infty) $
[1]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[2]

Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335

[3]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[4]

James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001

[5]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[6]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[7]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[8]

Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014

[9]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3685-3701. doi: 10.3934/dcdss.2020466

[11]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[12]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048

[13]

Qun Liu, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi. Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5683-5706. doi: 10.3934/dcds.2019249

[14]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[15]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[16]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[17]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[18]

Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025

[19]

Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857

[20]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (160)
  • HTML views (322)
  • Cited by (0)

Other articles
by authors

[Back to Top]