
-
Previous Article
A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents
- DCDS-B Home
- This Issue
-
Next Article
Persistence of mosquito vector and dengue: Impact of seasonal and diurnal temperature variations
Strong convergence rates for markovian representations of fractional processes
Department of Mathematical Stochastics, University of Freiburg, Germany |
Many fractional processes can be represented as an integral over a family of Ornstein–Uhlenbeck processes. This representation naturally lends itself to numerical discretizations, which are shown in this paper to have strong convergence rates of arbitrarily high polynomial order. This explains the potential, but also some limitations of such representations as the basis of Monte Carlo schemes for fractional volatility models such as the rough Bergomi model.
References:
[1] |
E. Abi Jaber,
Lifting the Heston model, Quantitative Finance, 19 (2019), 1995-2013.
doi: 10.1080/14697688.2019.1615113. |
[2] |
E. Abi Jaber and O. El Euch,
Markovian structure of the Volterra Heston model, Statistics & Probability Letters, 149 (2019), 63-72.
doi: 10.1016/j.spl.2019.01.024. |
[3] |
E. Abi Jaber and O. El Euch,
Multifactor approximation of rough volatility models, SIAM Journal on Financial Mathematics, 10 (2019), 309-349.
doi: 10.1137/18M1170236. |
[4] |
E. Abi Jaber, M. Larsson and S. Pulido,
Affine Volterra processes, The Annals of Applied Probability, 29 (2019), 3155-3200.
doi: 10.1214/19-AAP1477. |
[5] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition |
[6] |
E. Alòs, J. A. León and J. Vives,
On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance and Stochastics, 11 (2007), 571-589.
doi: 10.1007/s00780-007-0049-1. |
[7] |
C. Bayer, P. Friz and J. Gatheral,
Pricing under rough volatility, Quantitative Finance, 16 (2016), 887-904.
doi: 10.1080/14697688.2015.1099717. |
[8] |
C. Bayer, P. K. Friz, P. Gassiat, J. Martin and B. Stemper,
A regularity structure for rough volatility, Mathematical Finance, 30 (2020), 782-832.
doi: 10.1111/mafi.12233. |
[9] |
C. Bayer, P. K. Friz, A. Gulisashvili, B. Horvath and B. Stemper,
Short-time near-the-money skew in rough fractional volatility models, Quantitative Finance, 19 (2019), 779-798.
doi: 10.1080/14697688.2018.1529420. |
[10] |
M. Beiglböck and P. Siorpaes,
Pathwise versions of the Burkholder–Davis–Gundy inequality, Bernoulli, 21 (2015), 360-373.
doi: 10.3150/13-BEJ570. |
[11] |
M. Bennedsen, A. Lunde and M. S. Pakkanen, Decoupling the short-and long-term behavior of stochastic volatility, arXiv: 1610.00332, 2016.
doi: 10.2139/ssrn.2846756. |
[12] |
M. Bennedsen, A. Lunde and M. S. Pakkanen,
Hybrid scheme for Brownian semistationary processes, Finance and Stochastics, 21 (2017), 931-965.
doi: 10.1007/s00780-017-0335-5. |
[13] |
H. Brass and K. Petras, Quadrature Theory, vol. 178 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011.
doi: 10.1090/surv/178. |
[14] |
P. Carmona and L. Coutin,
Fractional Brownian motion and the Markov property, Electronic Communications in Probability, 3 (1998), 95-107.
doi: 10.1214/ECP.v3-998. |
[15] |
P. Carmona, L. Coutin and G. Montseny,
Approximation of some Gaussian processes, Statistical Inference for Stochastic Processes, 3 (2000), 161-171.
doi: 10.1023/A:1009999518898. |
[16] |
C. Cuchiero and J. Teichmann, Generalized Feller processes and Markovian lifts of stochastic Volterra processes: The affine case, Journal of Evolution Equations, (2020), 1–48.
doi: 10.1007/s00028-020-00557-2. |
[17] |
T. Dieker, Simulation of Fractional Brownian Motion, Master's thesis, University of Twente, 2004. Google Scholar |
[18] |
C. R. Dietrich and G. N. Newsam,
Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM Journal on Scientific Computing, 18 (1997), 1088-1107.
doi: 10.1137/S1064827592240555. |
[19] |
M. Forde and H. Zhang,
Asymptotics for rough stochastic volatility models, SIAM Journal on Financial Mathematics, 8 (2017), 114-145.
doi: 10.1137/15M1009330. |
[20] |
M. Fukasawa,
Asymptotic analysis for stochastic volatility: Martingale expansion, Finance and Stochastics, 15 (2011), 635-654.
doi: 10.1007/s00780-010-0136-6. |
[21] |
M. Gaß, K. Glau, M. Mahlstedt and M. Mair,
Chebyshev interpolation for parametric option pricing, Finance and Stochastics, 22 (2018), 701-731.
doi: 10.1007/s00780-018-0361-y. |
[22] |
M. Gaß, K. Glau and M. Mair,
Magic points in finance: Empirical integration for parametric option pricing, SIAM Journal on Financial Mathematics, 8 (2017), 766-803.
doi: 10.1137/16M1101301. |
[23] |
P. Gassiat, On the martingale property in the rough Bergomi model, Electronic Communications in Probability, 24 (2019), Paper No. 33, 9 pp.
doi: 10.1214/19-ECP239. |
[24] |
J. Gatheral, T. Jaisson and M. Rosenbaum,
Volatility is rough, Quantitative Finance, 18 (2018), 933-949.
doi: 10.1080/14697688.2017.1393551. |
[25] |
S. E. Graversen and G. Peskir,
Maximal inequalities for the Ornstein–Uhlenbeck process, Proceedings of the American Mathematical Society, 128 (2000), 3035-3041.
doi: 10.1090/S0002-9939-00-05345-4. |
[26] |
P. Harms and D. Stefanovits,
Affine representations of fractional processes with applications in mathematical finance, Stochastic Processes and their Applications, 129 (2019), 1185-1228.
doi: 10.1016/j.spa.2018.04.010. |
[27] |
B. Horvath, A. Jacquier and A. Muguruza, Functional central limit theorems for rough volatility, arXiv: 1711.03078, 2017.
doi: 10.2139/ssrn.3078743. |
[28] |
J. R. Hosking,
Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20 (1984), 1898-1908.
doi: 10.1029/WR020i012p01898. |
[29] |
T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces, vol. 67, Springer, Cham, 2017.
doi: 10.1007/978-3-319-69808-3. |
[30] |
R. McCrickerd and M. S. Pakkanen, Turbocharging Monte Carlo pricing for the rough Bergomi model, Quantitative Finance, 18 (2018), 1877–1886.
doi: 10.1080/14697688.2018.1459812. |
[31] |
A. A. Muravlev,
Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process, Russian Mathematical Surveys, 66 (2011), 439-441.
doi: 10.1070/RM2011v066n02ABEH004746. |
[32] |
L. Mytnik and T. S. Salisbury, Uniqueness for Volterra-type stochastic integral equations, arXiv: 1502.05513, 2015. Google Scholar |
[33] |
N. N. Vakhania, V. I. Tarieladze and S. A.Chobanyan, Probability distributions on Banach spaces, vol. 14, Springer Science & Business Media, 1987.
doi: 10.1007/978-94-009-3873-1. |
[34] |
M. Veraar,
The stochastic Fubini theorem revisited, Stochastics An International Journal of Probability and Stochastic Processes, 84 (2012), 543-551.
doi: 10.1080/17442508.2011.618883. |
show all references
References:
[1] |
E. Abi Jaber,
Lifting the Heston model, Quantitative Finance, 19 (2019), 1995-2013.
doi: 10.1080/14697688.2019.1615113. |
[2] |
E. Abi Jaber and O. El Euch,
Markovian structure of the Volterra Heston model, Statistics & Probability Letters, 149 (2019), 63-72.
doi: 10.1016/j.spl.2019.01.024. |
[3] |
E. Abi Jaber and O. El Euch,
Multifactor approximation of rough volatility models, SIAM Journal on Financial Mathematics, 10 (2019), 309-349.
doi: 10.1137/18M1170236. |
[4] |
E. Abi Jaber, M. Larsson and S. Pulido,
Affine Volterra processes, The Annals of Applied Probability, 29 (2019), 3155-3200.
doi: 10.1214/19-AAP1477. |
[5] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition |
[6] |
E. Alòs, J. A. León and J. Vives,
On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance and Stochastics, 11 (2007), 571-589.
doi: 10.1007/s00780-007-0049-1. |
[7] |
C. Bayer, P. Friz and J. Gatheral,
Pricing under rough volatility, Quantitative Finance, 16 (2016), 887-904.
doi: 10.1080/14697688.2015.1099717. |
[8] |
C. Bayer, P. K. Friz, P. Gassiat, J. Martin and B. Stemper,
A regularity structure for rough volatility, Mathematical Finance, 30 (2020), 782-832.
doi: 10.1111/mafi.12233. |
[9] |
C. Bayer, P. K. Friz, A. Gulisashvili, B. Horvath and B. Stemper,
Short-time near-the-money skew in rough fractional volatility models, Quantitative Finance, 19 (2019), 779-798.
doi: 10.1080/14697688.2018.1529420. |
[10] |
M. Beiglböck and P. Siorpaes,
Pathwise versions of the Burkholder–Davis–Gundy inequality, Bernoulli, 21 (2015), 360-373.
doi: 10.3150/13-BEJ570. |
[11] |
M. Bennedsen, A. Lunde and M. S. Pakkanen, Decoupling the short-and long-term behavior of stochastic volatility, arXiv: 1610.00332, 2016.
doi: 10.2139/ssrn.2846756. |
[12] |
M. Bennedsen, A. Lunde and M. S. Pakkanen,
Hybrid scheme for Brownian semistationary processes, Finance and Stochastics, 21 (2017), 931-965.
doi: 10.1007/s00780-017-0335-5. |
[13] |
H. Brass and K. Petras, Quadrature Theory, vol. 178 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011.
doi: 10.1090/surv/178. |
[14] |
P. Carmona and L. Coutin,
Fractional Brownian motion and the Markov property, Electronic Communications in Probability, 3 (1998), 95-107.
doi: 10.1214/ECP.v3-998. |
[15] |
P. Carmona, L. Coutin and G. Montseny,
Approximation of some Gaussian processes, Statistical Inference for Stochastic Processes, 3 (2000), 161-171.
doi: 10.1023/A:1009999518898. |
[16] |
C. Cuchiero and J. Teichmann, Generalized Feller processes and Markovian lifts of stochastic Volterra processes: The affine case, Journal of Evolution Equations, (2020), 1–48.
doi: 10.1007/s00028-020-00557-2. |
[17] |
T. Dieker, Simulation of Fractional Brownian Motion, Master's thesis, University of Twente, 2004. Google Scholar |
[18] |
C. R. Dietrich and G. N. Newsam,
Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM Journal on Scientific Computing, 18 (1997), 1088-1107.
doi: 10.1137/S1064827592240555. |
[19] |
M. Forde and H. Zhang,
Asymptotics for rough stochastic volatility models, SIAM Journal on Financial Mathematics, 8 (2017), 114-145.
doi: 10.1137/15M1009330. |
[20] |
M. Fukasawa,
Asymptotic analysis for stochastic volatility: Martingale expansion, Finance and Stochastics, 15 (2011), 635-654.
doi: 10.1007/s00780-010-0136-6. |
[21] |
M. Gaß, K. Glau, M. Mahlstedt and M. Mair,
Chebyshev interpolation for parametric option pricing, Finance and Stochastics, 22 (2018), 701-731.
doi: 10.1007/s00780-018-0361-y. |
[22] |
M. Gaß, K. Glau and M. Mair,
Magic points in finance: Empirical integration for parametric option pricing, SIAM Journal on Financial Mathematics, 8 (2017), 766-803.
doi: 10.1137/16M1101301. |
[23] |
P. Gassiat, On the martingale property in the rough Bergomi model, Electronic Communications in Probability, 24 (2019), Paper No. 33, 9 pp.
doi: 10.1214/19-ECP239. |
[24] |
J. Gatheral, T. Jaisson and M. Rosenbaum,
Volatility is rough, Quantitative Finance, 18 (2018), 933-949.
doi: 10.1080/14697688.2017.1393551. |
[25] |
S. E. Graversen and G. Peskir,
Maximal inequalities for the Ornstein–Uhlenbeck process, Proceedings of the American Mathematical Society, 128 (2000), 3035-3041.
doi: 10.1090/S0002-9939-00-05345-4. |
[26] |
P. Harms and D. Stefanovits,
Affine representations of fractional processes with applications in mathematical finance, Stochastic Processes and their Applications, 129 (2019), 1185-1228.
doi: 10.1016/j.spa.2018.04.010. |
[27] |
B. Horvath, A. Jacquier and A. Muguruza, Functional central limit theorems for rough volatility, arXiv: 1711.03078, 2017.
doi: 10.2139/ssrn.3078743. |
[28] |
J. R. Hosking,
Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20 (1984), 1898-1908.
doi: 10.1029/WR020i012p01898. |
[29] |
T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces, vol. 67, Springer, Cham, 2017.
doi: 10.1007/978-3-319-69808-3. |
[30] |
R. McCrickerd and M. S. Pakkanen, Turbocharging Monte Carlo pricing for the rough Bergomi model, Quantitative Finance, 18 (2018), 1877–1886.
doi: 10.1080/14697688.2018.1459812. |
[31] |
A. A. Muravlev,
Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process, Russian Mathematical Surveys, 66 (2011), 439-441.
doi: 10.1070/RM2011v066n02ABEH004746. |
[32] |
L. Mytnik and T. S. Salisbury, Uniqueness for Volterra-type stochastic integral equations, arXiv: 1502.05513, 2015. Google Scholar |
[33] |
N. N. Vakhania, V. I. Tarieladze and S. A.Chobanyan, Probability distributions on Banach spaces, vol. 14, Springer Science & Business Media, 1987.
doi: 10.1007/978-94-009-3873-1. |
[34] |
M. Veraar,
The stochastic Fubini theorem revisited, Stochastics An International Journal of Probability and Stochastic Processes, 84 (2012), 543-551.
doi: 10.1080/17442508.2011.618883. |









Method | Structure | Error | Complexity |
Cholesky | Static | 0 | |
Hosking, Dieker [28,17] | Recursive | 0 | |
Dietrich, Newsam [18] | Static | 0 | |
Bennedsen, Lunde, Pakkanen [12] | Recursive | ||
Carmona, Coutin, Montseny [15] | Recursive | ||
This paper | Recursive |
Method | Structure | Error | Complexity |
Cholesky | Static | 0 | |
Hosking, Dieker [28,17] | Recursive | 0 | |
Dietrich, Newsam [18] | Static | 0 | |
Bennedsen, Lunde, Pakkanen [12] | Recursive | ||
Carmona, Coutin, Montseny [15] | Recursive | ||
This paper | Recursive |
[1] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[2] |
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 |
[3] |
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 |
[4] |
James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 |
[5] |
Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147 |
[6] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[7] |
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 |
[8] |
Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501 |
[9] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[10] |
Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 |
[11] |
Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048 |
[12] |
Qun Liu, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi. Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5683-5706. doi: 10.3934/dcds.2019249 |
[13] |
Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826 |
[14] |
Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 |
[15] |
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 |
[16] |
Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 |
[17] |
Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 |
[18] |
Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857 |
[19] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[20] |
De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021023 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]