doi: 10.3934/dcdsb.2020367

Strong convergence rates for markovian representations of fractional processes

Department of Mathematical Stochastics, University of Freiburg, Germany

Received  February 2019 Revised  August 2020 Published  December 2020

Fund Project: The author gratefully acknowledges support in the form of a Junior Fellowship of the Freiburg Institute of Advances Studies

Many fractional processes can be represented as an integral over a family of Ornstein–Uhlenbeck processes. This representation naturally lends itself to numerical discretizations, which are shown in this paper to have strong convergence rates of arbitrarily high polynomial order. This explains the potential, but also some limitations of such representations as the basis of Monte Carlo schemes for fractional volatility models such as the rough Bergomi model.

Citation: Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020367
References:
[1]

E. Abi Jaber, Lifting the Heston model, Quantitative Finance, 19 (2019), 1995-2013.  doi: 10.1080/14697688.2019.1615113.  Google Scholar

[2]

E. Abi Jaber and O. El Euch, Markovian structure of the Volterra Heston model, Statistics & Probability Letters, 149 (2019), 63-72.  doi: 10.1016/j.spl.2019.01.024.  Google Scholar

[3]

E. Abi Jaber and O. El Euch, Multifactor approximation of rough volatility models, SIAM Journal on Financial Mathematics, 10 (2019), 309-349.  doi: 10.1137/18M1170236.  Google Scholar

[4]

E. Abi JaberM. Larsson and S. Pulido, Affine Volterra processes, The Annals of Applied Probability, 29 (2019), 3155-3200.  doi: 10.1214/19-AAP1477.  Google Scholar

[5]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition  Google Scholar

[6]

E. AlòsJ. A. León and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance and Stochastics, 11 (2007), 571-589.  doi: 10.1007/s00780-007-0049-1.  Google Scholar

[7]

C. BayerP. Friz and J. Gatheral, Pricing under rough volatility, Quantitative Finance, 16 (2016), 887-904.  doi: 10.1080/14697688.2015.1099717.  Google Scholar

[8]

C. BayerP. K. FrizP. GassiatJ. Martin and B. Stemper, A regularity structure for rough volatility, Mathematical Finance, 30 (2020), 782-832.  doi: 10.1111/mafi.12233.  Google Scholar

[9]

C. BayerP. K. FrizA. GulisashviliB. Horvath and B. Stemper, Short-time near-the-money skew in rough fractional volatility models, Quantitative Finance, 19 (2019), 779-798.  doi: 10.1080/14697688.2018.1529420.  Google Scholar

[10]

M. Beiglböck and P. Siorpaes, Pathwise versions of the Burkholder–Davis–Gundy inequality, Bernoulli, 21 (2015), 360-373.  doi: 10.3150/13-BEJ570.  Google Scholar

[11]

M. Bennedsen, A. Lunde and M. S. Pakkanen, Decoupling the short-and long-term behavior of stochastic volatility, arXiv: 1610.00332, 2016. doi: 10.2139/ssrn.2846756.  Google Scholar

[12]

M. BennedsenA. Lunde and M. S. Pakkanen, Hybrid scheme for Brownian semistationary processes, Finance and Stochastics, 21 (2017), 931-965.  doi: 10.1007/s00780-017-0335-5.  Google Scholar

[13]

H. Brass and K. Petras, Quadrature Theory, vol. 178 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/178.  Google Scholar

[14]

P. Carmona and L. Coutin, Fractional Brownian motion and the Markov property, Electronic Communications in Probability, 3 (1998), 95-107.  doi: 10.1214/ECP.v3-998.  Google Scholar

[15]

P. CarmonaL. Coutin and G. Montseny, Approximation of some Gaussian processes, Statistical Inference for Stochastic Processes, 3 (2000), 161-171.  doi: 10.1023/A:1009999518898.  Google Scholar

[16]

C. Cuchiero and J. Teichmann, Generalized Feller processes and Markovian lifts of stochastic Volterra processes: The affine case, Journal of Evolution Equations, (2020), 1–48. doi: 10.1007/s00028-020-00557-2.  Google Scholar

[17]

T. Dieker, Simulation of Fractional Brownian Motion, Master's thesis, University of Twente, 2004. Google Scholar

[18]

C. R. Dietrich and G. N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM Journal on Scientific Computing, 18 (1997), 1088-1107.  doi: 10.1137/S1064827592240555.  Google Scholar

[19]

M. Forde and H. Zhang, Asymptotics for rough stochastic volatility models, SIAM Journal on Financial Mathematics, 8 (2017), 114-145.  doi: 10.1137/15M1009330.  Google Scholar

[20]

M. Fukasawa, Asymptotic analysis for stochastic volatility: Martingale expansion, Finance and Stochastics, 15 (2011), 635-654.  doi: 10.1007/s00780-010-0136-6.  Google Scholar

[21]

M. GaßK. GlauM. Mahlstedt and M. Mair, Chebyshev interpolation for parametric option pricing, Finance and Stochastics, 22 (2018), 701-731.  doi: 10.1007/s00780-018-0361-y.  Google Scholar

[22]

M. GaßK. Glau and M. Mair, Magic points in finance: Empirical integration for parametric option pricing, SIAM Journal on Financial Mathematics, 8 (2017), 766-803.  doi: 10.1137/16M1101301.  Google Scholar

[23]

P. Gassiat, On the martingale property in the rough Bergomi model, Electronic Communications in Probability, 24 (2019), Paper No. 33, 9 pp. doi: 10.1214/19-ECP239.  Google Scholar

[24]

J. GatheralT. Jaisson and M. Rosenbaum, Volatility is rough, Quantitative Finance, 18 (2018), 933-949.  doi: 10.1080/14697688.2017.1393551.  Google Scholar

[25]

S. E. Graversen and G. Peskir, Maximal inequalities for the Ornstein–Uhlenbeck process, Proceedings of the American Mathematical Society, 128 (2000), 3035-3041.  doi: 10.1090/S0002-9939-00-05345-4.  Google Scholar

[26]

P. Harms and D. Stefanovits, Affine representations of fractional processes with applications in mathematical finance, Stochastic Processes and their Applications, 129 (2019), 1185-1228.  doi: 10.1016/j.spa.2018.04.010.  Google Scholar

[27]

B. Horvath, A. Jacquier and A. Muguruza, Functional central limit theorems for rough volatility, arXiv: 1711.03078, 2017. doi: 10.2139/ssrn.3078743.  Google Scholar

[28]

J. R. Hosking, Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20 (1984), 1898-1908.  doi: 10.1029/WR020i012p01898.  Google Scholar

[29]

T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces, vol. 67, Springer, Cham, 2017. doi: 10.1007/978-3-319-69808-3.  Google Scholar

[30]

R. McCrickerd and M. S. Pakkanen, Turbocharging Monte Carlo pricing for the rough Bergomi model, Quantitative Finance, 18 (2018), 1877–1886. doi: 10.1080/14697688.2018.1459812.  Google Scholar

[31]

A. A. Muravlev, Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process, Russian Mathematical Surveys, 66 (2011), 439-441.  doi: 10.1070/RM2011v066n02ABEH004746.  Google Scholar

[32]

L. Mytnik and T. S. Salisbury, Uniqueness for Volterra-type stochastic integral equations, arXiv: 1502.05513, 2015. Google Scholar

[33]

N. N. Vakhania, V. I. Tarieladze and S. A.Chobanyan, Probability distributions on Banach spaces, vol. 14, Springer Science & Business Media, 1987. doi: 10.1007/978-94-009-3873-1.  Google Scholar

[34]

M. Veraar, The stochastic Fubini theorem revisited, Stochastics An International Journal of Probability and Stochastic Processes, 84 (2012), 543-551.  doi: 10.1080/17442508.2011.618883.  Google Scholar

show all references

References:
[1]

E. Abi Jaber, Lifting the Heston model, Quantitative Finance, 19 (2019), 1995-2013.  doi: 10.1080/14697688.2019.1615113.  Google Scholar

[2]

E. Abi Jaber and O. El Euch, Markovian structure of the Volterra Heston model, Statistics & Probability Letters, 149 (2019), 63-72.  doi: 10.1016/j.spl.2019.01.024.  Google Scholar

[3]

E. Abi Jaber and O. El Euch, Multifactor approximation of rough volatility models, SIAM Journal on Financial Mathematics, 10 (2019), 309-349.  doi: 10.1137/18M1170236.  Google Scholar

[4]

E. Abi JaberM. Larsson and S. Pulido, Affine Volterra processes, The Annals of Applied Probability, 29 (2019), 3155-3200.  doi: 10.1214/19-AAP1477.  Google Scholar

[5]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, 3rd edition  Google Scholar

[6]

E. AlòsJ. A. León and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance and Stochastics, 11 (2007), 571-589.  doi: 10.1007/s00780-007-0049-1.  Google Scholar

[7]

C. BayerP. Friz and J. Gatheral, Pricing under rough volatility, Quantitative Finance, 16 (2016), 887-904.  doi: 10.1080/14697688.2015.1099717.  Google Scholar

[8]

C. BayerP. K. FrizP. GassiatJ. Martin and B. Stemper, A regularity structure for rough volatility, Mathematical Finance, 30 (2020), 782-832.  doi: 10.1111/mafi.12233.  Google Scholar

[9]

C. BayerP. K. FrizA. GulisashviliB. Horvath and B. Stemper, Short-time near-the-money skew in rough fractional volatility models, Quantitative Finance, 19 (2019), 779-798.  doi: 10.1080/14697688.2018.1529420.  Google Scholar

[10]

M. Beiglböck and P. Siorpaes, Pathwise versions of the Burkholder–Davis–Gundy inequality, Bernoulli, 21 (2015), 360-373.  doi: 10.3150/13-BEJ570.  Google Scholar

[11]

M. Bennedsen, A. Lunde and M. S. Pakkanen, Decoupling the short-and long-term behavior of stochastic volatility, arXiv: 1610.00332, 2016. doi: 10.2139/ssrn.2846756.  Google Scholar

[12]

M. BennedsenA. Lunde and M. S. Pakkanen, Hybrid scheme for Brownian semistationary processes, Finance and Stochastics, 21 (2017), 931-965.  doi: 10.1007/s00780-017-0335-5.  Google Scholar

[13]

H. Brass and K. Petras, Quadrature Theory, vol. 178 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/178.  Google Scholar

[14]

P. Carmona and L. Coutin, Fractional Brownian motion and the Markov property, Electronic Communications in Probability, 3 (1998), 95-107.  doi: 10.1214/ECP.v3-998.  Google Scholar

[15]

P. CarmonaL. Coutin and G. Montseny, Approximation of some Gaussian processes, Statistical Inference for Stochastic Processes, 3 (2000), 161-171.  doi: 10.1023/A:1009999518898.  Google Scholar

[16]

C. Cuchiero and J. Teichmann, Generalized Feller processes and Markovian lifts of stochastic Volterra processes: The affine case, Journal of Evolution Equations, (2020), 1–48. doi: 10.1007/s00028-020-00557-2.  Google Scholar

[17]

T. Dieker, Simulation of Fractional Brownian Motion, Master's thesis, University of Twente, 2004. Google Scholar

[18]

C. R. Dietrich and G. N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM Journal on Scientific Computing, 18 (1997), 1088-1107.  doi: 10.1137/S1064827592240555.  Google Scholar

[19]

M. Forde and H. Zhang, Asymptotics for rough stochastic volatility models, SIAM Journal on Financial Mathematics, 8 (2017), 114-145.  doi: 10.1137/15M1009330.  Google Scholar

[20]

M. Fukasawa, Asymptotic analysis for stochastic volatility: Martingale expansion, Finance and Stochastics, 15 (2011), 635-654.  doi: 10.1007/s00780-010-0136-6.  Google Scholar

[21]

M. GaßK. GlauM. Mahlstedt and M. Mair, Chebyshev interpolation for parametric option pricing, Finance and Stochastics, 22 (2018), 701-731.  doi: 10.1007/s00780-018-0361-y.  Google Scholar

[22]

M. GaßK. Glau and M. Mair, Magic points in finance: Empirical integration for parametric option pricing, SIAM Journal on Financial Mathematics, 8 (2017), 766-803.  doi: 10.1137/16M1101301.  Google Scholar

[23]

P. Gassiat, On the martingale property in the rough Bergomi model, Electronic Communications in Probability, 24 (2019), Paper No. 33, 9 pp. doi: 10.1214/19-ECP239.  Google Scholar

[24]

J. GatheralT. Jaisson and M. Rosenbaum, Volatility is rough, Quantitative Finance, 18 (2018), 933-949.  doi: 10.1080/14697688.2017.1393551.  Google Scholar

[25]

S. E. Graversen and G. Peskir, Maximal inequalities for the Ornstein–Uhlenbeck process, Proceedings of the American Mathematical Society, 128 (2000), 3035-3041.  doi: 10.1090/S0002-9939-00-05345-4.  Google Scholar

[26]

P. Harms and D. Stefanovits, Affine representations of fractional processes with applications in mathematical finance, Stochastic Processes and their Applications, 129 (2019), 1185-1228.  doi: 10.1016/j.spa.2018.04.010.  Google Scholar

[27]

B. Horvath, A. Jacquier and A. Muguruza, Functional central limit theorems for rough volatility, arXiv: 1711.03078, 2017. doi: 10.2139/ssrn.3078743.  Google Scholar

[28]

J. R. Hosking, Modeling persistence in hydrological time series using fractional differencing, Water Resources Research, 20 (1984), 1898-1908.  doi: 10.1029/WR020i012p01898.  Google Scholar

[29]

T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces, vol. 67, Springer, Cham, 2017. doi: 10.1007/978-3-319-69808-3.  Google Scholar

[30]

R. McCrickerd and M. S. Pakkanen, Turbocharging Monte Carlo pricing for the rough Bergomi model, Quantitative Finance, 18 (2018), 1877–1886. doi: 10.1080/14697688.2018.1459812.  Google Scholar

[31]

A. A. Muravlev, Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process, Russian Mathematical Surveys, 66 (2011), 439-441.  doi: 10.1070/RM2011v066n02ABEH004746.  Google Scholar

[32]

L. Mytnik and T. S. Salisbury, Uniqueness for Volterra-type stochastic integral equations, arXiv: 1502.05513, 2015. Google Scholar

[33]

N. N. Vakhania, V. I. Tarieladze and S. A.Chobanyan, Probability distributions on Banach spaces, vol. 14, Springer Science & Business Media, 1987. doi: 10.1007/978-94-009-3873-1.  Google Scholar

[34]

M. Veraar, The stochastic Fubini theorem revisited, Stochastics An International Journal of Probability and Stochastic Processes, 84 (2012), 543-551.  doi: 10.1080/17442508.2011.618883.  Google Scholar

Figure 1.  Volterra Brownian motion of Hurst index $ H\in(0,1/2) $ can be represented as an integral $ W^H_t = \int_0^\infty Y_t(x) x^{-1/2-H}dx $ over a Gaussian random field $ Y_t(x) $. The smoothness of the random field in the spatial dimension $ x $ allows one to approximate this integral efficiently using high order quadrature rules
Figure 2.  Dependence of the approximations on the number $ n $ of quadrature intervals and the Hurst index $ H $. Left: varying the number $ n\in\{2,5,10,20,40\}$ = of quadrature intervals with fixed parameters $ H = 0.1 $, $ m = 5 $. Right: varying the Hurst index $ H\in\{0.1,0.2,0.3,0.4\}$ = with fixed parameters $ n = 40 $, $ m = 5 $
Figure 3.  The upper bound $ 2Hm/3 $ on the convergence rate established in Remark 6.2 for $ m $-point interpolatory quadrature closely matches the numerically observed one (here: at $ t = 1 $, computed analytically from the covariance functions of the Gaussian processes $ W^H $ and $ W^{H,n} $). Left: relative error $ e = \|W^H_1-W^{H,n}_1\|_{L^2(\Omega)}/\|W^H_1\|_{L^2(\Omega)} $ for $ m\in\{2,3,\dots,20\}$ = with $ H = 0.1 $. Right: slopes of the lines in the left plot (dots) and predicted convergence rate (line)
Table 1.  Complexity of several numerical methods for sampling a fractional process $ (W^H_{i/k})_{i\in\{1,\dots,k\}} $ with Hurst index $ H\in(0,1/2) $ at $ k $ equidistant time points
Method Structure Error Complexity
Cholesky Static 0 $ k^3 $
Hosking, Dieker [28,17] Recursive 0 $ k^2 $
Dietrich, Newsam [18] Static 0 $ k\log k $
Bennedsen, Lunde, Pakkanen [12] Recursive $ k^{-H} $ $ k \log k $
Carmona, Coutin, Montseny [15] Recursive $ \epsilon $ $ k\epsilon^{-3/(4H)} $
This paper Recursive $ \epsilon $ $ k\epsilon^{-1/r} $ for $ r\in(0,\infty) $
Method Structure Error Complexity
Cholesky Static 0 $ k^3 $
Hosking, Dieker [28,17] Recursive 0 $ k^2 $
Dietrich, Newsam [18] Static 0 $ k\log k $
Bennedsen, Lunde, Pakkanen [12] Recursive $ k^{-H} $ $ k \log k $
Carmona, Coutin, Montseny [15] Recursive $ \epsilon $ $ k\epsilon^{-3/(4H)} $
This paper Recursive $ \epsilon $ $ k\epsilon^{-1/r} $ for $ r\in(0,\infty) $
[1]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[2]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[5]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[6]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[7]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[8]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[9]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[10]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[13]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[14]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[15]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[16]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[17]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[18]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[19]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[20]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]