# American Institute of Mathematical Sciences

• Previous Article
A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents
• DCDS-B Home
• This Issue
• Next Article
Persistence of mosquito vector and dengue: Impact of seasonal and diurnal temperature variations

## Strong convergence rates for markovian representations of fractional processes

 Department of Mathematical Stochastics, University of Freiburg, Germany

Received  February 2019 Revised  August 2020 Published  December 2020

Fund Project: The author gratefully acknowledges support in the form of a Junior Fellowship of the Freiburg Institute of Advances Studies

Many fractional processes can be represented as an integral over a family of Ornstein–Uhlenbeck processes. This representation naturally lends itself to numerical discretizations, which are shown in this paper to have strong convergence rates of arbitrarily high polynomial order. This explains the potential, but also some limitations of such representations as the basis of Monte Carlo schemes for fractional volatility models such as the rough Bergomi model.

Citation: Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020367
##### References:

show all references

##### References:
Volterra Brownian motion of Hurst index $H\in(0,1/2)$ can be represented as an integral $W^H_t = \int_0^\infty Y_t(x) x^{-1/2-H}dx$ over a Gaussian random field $Y_t(x)$. The smoothness of the random field in the spatial dimension $x$ allows one to approximate this integral efficiently using high order quadrature rules
Dependence of the approximations on the number $n$ of quadrature intervals and the Hurst index $H$. Left: varying the number $n\in\{2,5,10,20,40\}$ = of quadrature intervals with fixed parameters $H = 0.1$, $m = 5$. Right: varying the Hurst index $H\in\{0.1,0.2,0.3,0.4\}$ = with fixed parameters $n = 40$, $m = 5$
The upper bound $2Hm/3$ on the convergence rate established in Remark 6.2 for $m$-point interpolatory quadrature closely matches the numerically observed one (here: at $t = 1$, computed analytically from the covariance functions of the Gaussian processes $W^H$ and $W^{H,n}$). Left: relative error $e = \|W^H_1-W^{H,n}_1\|_{L^2(\Omega)}/\|W^H_1\|_{L^2(\Omega)}$ for $m\in\{2,3,\dots,20\}$ = with $H = 0.1$. Right: slopes of the lines in the left plot (dots) and predicted convergence rate (line)
Complexity of several numerical methods for sampling a fractional process $(W^H_{i/k})_{i\in\{1,\dots,k\}}$ with Hurst index $H\in(0,1/2)$ at $k$ equidistant time points
 Method Structure Error Complexity Cholesky Static 0 $k^3$ Hosking, Dieker [28,17] Recursive 0 $k^2$ Dietrich, Newsam [18] Static 0 $k\log k$ Bennedsen, Lunde, Pakkanen [12] Recursive $k^{-H}$ $k \log k$ Carmona, Coutin, Montseny [15] Recursive $\epsilon$ $k\epsilon^{-3/(4H)}$ This paper Recursive $\epsilon$ $k\epsilon^{-1/r}$ for $r\in(0,\infty)$
 Method Structure Error Complexity Cholesky Static 0 $k^3$ Hosking, Dieker [28,17] Recursive 0 $k^2$ Dietrich, Newsam [18] Static 0 $k\log k$ Bennedsen, Lunde, Pakkanen [12] Recursive $k^{-H}$ $k \log k$ Carmona, Coutin, Montseny [15] Recursive $\epsilon$ $k\epsilon^{-3/(4H)}$ This paper Recursive $\epsilon$ $k\epsilon^{-1/r}$ for $r\in(0,\infty)$
 [1] Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 [2] Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 [3] Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 [4] James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 [5] Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147 [6] Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 [7] Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 [8] Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501 [9] Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466 [10] Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 [11] Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048 [12] Qun Liu, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi. Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5683-5706. doi: 10.3934/dcds.2019249 [13] Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826 [14] Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 [15] Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 [16] Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 [17] Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 [18] Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857 [19] Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 [20] De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021023

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables