doi: 10.3934/dcdsb.2020368

Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve

1. 

School of Mathematics and Statistics, Anhui Normal University, Wuhu, Anhui, 241000, China

a. 

Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang, 321004, China

b. 

Department of Mathematics Shanghai Normal University Shanghai, 200234, China

* Corresponding author: M. Han

Received  June 2019 Revised  July 2020 Published  December 2020

Fund Project: H. Tian is supported by National Natural Science Foundation of China (No.12001012), Natural Science Foundation of Anhui Province (No. 2008085QA10) and Scientific Research Foundation for Scholars of Anhui Normal University. M. Han is supported by National Natural Science Foundation of China (Nos. 11931016 and 11771296)

This paper deals with the number of limit cycles for planar piecewise smooth near-Hamiltonian or near-integrable systems with a switching curve. The main task is to establish a so-called first order Melnikov function which plays a crucial role in the study of the number of limit cycles bifurcated from a periodic annulus. We use the function to study Hopf bifurcation when the periodic annulus has an elementary center as its boundary. As applications, using the first order Melnikov function, we consider the number of limit cycles bifurcated from the periodic annulus of a linear center under piecewise linear polynomial perturbations with three kinds of quadratic switching curves. And we obtain three limit cycles for each case.

Citation: Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020368
References:
[1] S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, Wiley-IEEE Press, New York, 2001.   Google Scholar
[2]

E. A. Barbashin, Introduction to the Theory of Stability, Wolters-Noordhoff Publishing, Groningen, 1970.  Google Scholar

[3]

D. de Carvalho Braga and L. F. Mello, Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones, Electron. J. Differential Equations, 2015 (2015), 1-12.   Google Scholar

[4]

P. T. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear differential systems with nonregular separation line, Phys. D, 337 (2016), 67-82.  doi: 10.1016/j.physd.2016.07.008.  Google Scholar

[5]

J.-P. FrancoiseH. JiD. Xiao and J. Yu, Global dynamics of a piecewise smooth system for brain Lactate metabolism, Qual. Theory Dyn. Syst., 18 (2019), 315-332.  doi: 10.1007/s12346-018-0286-z.  Google Scholar

[6]

M. GrauF. Mañosas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[7]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.  doi: 10.11948/2015061.  Google Scholar

[8]

M. Han and J. Yang, The Maximum Number of Zeros of Functions with Parameters and Application to Differential Equations, J. Nonlinear Model. Anal., 3 (2021), 13-34.  doi: 10.12150/jnma.2021.13.  Google Scholar

[9]

S.-M. Huan and X.-S. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.  doi: 10.3934/dcds.2012.32.2147.  Google Scholar

[10]

S. Karlin and W. J. Studden, Tchebycheff Systems: With Application in Analysis and Statistics, Interscience Publisher, 1966.  Google Scholar

[11]

V. Křivan, On the Gause predator-prey model with a refuge: a fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.  doi: 10.1016/j.jtbi.2011.01.016.  Google Scholar

[12]

F. Liang and M. Han, Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos, Solitons & Fractals, 45 (2012), 454-464.  doi: 10.1016/j.chaos.2011.09.013.  Google Scholar

[13]

F. LiangM. Han and V. G. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.  doi: 10.1016/j.na.2012.03.022.  Google Scholar

[14]

F. LiangV. G. Romanovski and D. Zhang, Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solitons Fractals, 111 (2018), 18-34.  doi: 10.1016/j.chaos.2018.04.002.  Google Scholar

[15]

X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 1379-1390.  doi: 10.1142/S021812741002654X.  Google Scholar

[16]

Y, Liu, F. Li and P. Dang, Bifurcation analysis in a class of piecewise nonlinear systems with a nonsmooth heteroclinic loop, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850026. doi: 10.1142/S0218127418500268.  Google Scholar

[17]

J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.   Google Scholar

[18]

Y. Tian and P. Yu, Center conditions in a switching Bautin system, J. Differential Equations, 259 (2015), 1203-1226.  doi: 10.1016/j.jde.2015.02.044.  Google Scholar

[19]

Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750126. doi: 10.1142/S0218127417501267.  Google Scholar

[20]

C. Zou and J. Yang, Piecewise linear differential system with a center-saddle type singularity, J. Math. Anal. Appl., 459 (2018), 453-463.  doi: 10.1016/j.jmaa.2017.10.043.  Google Scholar

show all references

References:
[1] S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, Wiley-IEEE Press, New York, 2001.   Google Scholar
[2]

E. A. Barbashin, Introduction to the Theory of Stability, Wolters-Noordhoff Publishing, Groningen, 1970.  Google Scholar

[3]

D. de Carvalho Braga and L. F. Mello, Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones, Electron. J. Differential Equations, 2015 (2015), 1-12.   Google Scholar

[4]

P. T. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear differential systems with nonregular separation line, Phys. D, 337 (2016), 67-82.  doi: 10.1016/j.physd.2016.07.008.  Google Scholar

[5]

J.-P. FrancoiseH. JiD. Xiao and J. Yu, Global dynamics of a piecewise smooth system for brain Lactate metabolism, Qual. Theory Dyn. Syst., 18 (2019), 315-332.  doi: 10.1007/s12346-018-0286-z.  Google Scholar

[6]

M. GrauF. Mañosas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[7]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.  doi: 10.11948/2015061.  Google Scholar

[8]

M. Han and J. Yang, The Maximum Number of Zeros of Functions with Parameters and Application to Differential Equations, J. Nonlinear Model. Anal., 3 (2021), 13-34.  doi: 10.12150/jnma.2021.13.  Google Scholar

[9]

S.-M. Huan and X.-S. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.  doi: 10.3934/dcds.2012.32.2147.  Google Scholar

[10]

S. Karlin and W. J. Studden, Tchebycheff Systems: With Application in Analysis and Statistics, Interscience Publisher, 1966.  Google Scholar

[11]

V. Křivan, On the Gause predator-prey model with a refuge: a fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.  doi: 10.1016/j.jtbi.2011.01.016.  Google Scholar

[12]

F. Liang and M. Han, Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos, Solitons & Fractals, 45 (2012), 454-464.  doi: 10.1016/j.chaos.2011.09.013.  Google Scholar

[13]

F. LiangM. Han and V. G. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.  doi: 10.1016/j.na.2012.03.022.  Google Scholar

[14]

F. LiangV. G. Romanovski and D. Zhang, Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solitons Fractals, 111 (2018), 18-34.  doi: 10.1016/j.chaos.2018.04.002.  Google Scholar

[15]

X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 1379-1390.  doi: 10.1142/S021812741002654X.  Google Scholar

[16]

Y, Liu, F. Li and P. Dang, Bifurcation analysis in a class of piecewise nonlinear systems with a nonsmooth heteroclinic loop, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850026. doi: 10.1142/S0218127418500268.  Google Scholar

[17]

J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.   Google Scholar

[18]

Y. Tian and P. Yu, Center conditions in a switching Bautin system, J. Differential Equations, 259 (2015), 1203-1226.  doi: 10.1016/j.jde.2015.02.044.  Google Scholar

[19]

Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750126. doi: 10.1142/S0218127417501267.  Google Scholar

[20]

C. Zou and J. Yang, Piecewise linear differential system with a center-saddle type singularity, J. Math. Anal. Appl., 459 (2018), 453-463.  doi: 10.1016/j.jmaa.2017.10.043.  Google Scholar

Figure 1.  The orbit $ \widehat{AA_\epsilon} $ of system (4)
Figure 2.  The orbit $ \widehat{AA_\epsilon} $ of system (31)
Figure 3.  Periodic orbits and switching curve of system (34)$ |_{\epsilon = 0} $
[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[3]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[4]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[5]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[6]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[9]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[12]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[19]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[20]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (23)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]