
-
Previous Article
System specific triangulations for the construction of CPA Lyapunov functions
- DCDS-B Home
- This Issue
-
Next Article
The multi-patch logistic equation
Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve
1. | School of Mathematics and Statistics, Anhui Normal University, Wuhu, Anhui, 241000, China |
a. | Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang, 321004, China |
b. | Department of Mathematics Shanghai Normal University Shanghai, 200234, China |
This paper deals with the number of limit cycles for planar piecewise smooth near-Hamiltonian or near-integrable systems with a switching curve. The main task is to establish a so-called first order Melnikov function which plays a crucial role in the study of the number of limit cycles bifurcated from a periodic annulus. We use the function to study Hopf bifurcation when the periodic annulus has an elementary center as its boundary. As applications, using the first order Melnikov function, we consider the number of limit cycles bifurcated from the periodic annulus of a linear center under piecewise linear polynomial perturbations with three kinds of quadratic switching curves. And we obtain three limit cycles for each case.
References:
[1] | S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, Wiley-IEEE Press, New York, 2001. Google Scholar |
[2] |
E. A. Barbashin, Introduction to the Theory of Stability, Wolters-Noordhoff Publishing, Groningen, 1970. |
[3] |
D. de Carvalho Braga and L. F. Mello,
Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones, Electron. J. Differential Equations, 2015 (2015), 1-12.
|
[4] |
P. T. Cardin and J. Torregrosa,
Limit cycles in planar piecewise linear differential systems with nonregular separation line, Phys. D, 337 (2016), 67-82.
doi: 10.1016/j.physd.2016.07.008. |
[5] |
J.-P. Francoise, H. Ji, D. Xiao and J. Yu,
Global dynamics of a piecewise smooth system for brain Lactate metabolism, Qual. Theory Dyn. Syst., 18 (2019), 315-332.
doi: 10.1007/s12346-018-0286-z. |
[6] |
M. Grau, F. Mañosas and J. Villadelprat,
A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[7] |
M. Han and L. Sheng,
Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.
doi: 10.11948/2015061. |
[8] |
M. Han and J. Yang,
The Maximum Number of Zeros of Functions with Parameters and Application to Differential Equations, J. Nonlinear Model. Anal., 3 (2021), 13-34.
doi: 10.12150/jnma.2021.13. |
[9] |
S.-M. Huan and X.-S. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[10] |
S. Karlin and W. J. Studden, Tchebycheff Systems: With Application in Analysis and Statistics, Interscience Publisher, 1966. |
[11] |
V. Křivan,
On the Gause predator-prey model with a refuge: a fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.
doi: 10.1016/j.jtbi.2011.01.016. |
[12] |
F. Liang and M. Han,
Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos, Solitons & Fractals, 45 (2012), 454-464.
doi: 10.1016/j.chaos.2011.09.013. |
[13] |
F. Liang, M. Han and V. G. Romanovski,
Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.
doi: 10.1016/j.na.2012.03.022. |
[14] |
F. Liang, V. G. Romanovski and D. Zhang,
Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solitons Fractals, 111 (2018), 18-34.
doi: 10.1016/j.chaos.2018.04.002. |
[15] |
X. Liu and M. Han,
Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 1379-1390.
doi: 10.1142/S021812741002654X. |
[16] |
Y, Liu, F. Li and P. Dang, Bifurcation analysis in a class of piecewise nonlinear systems with a nonsmooth heteroclinic loop, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850026.
doi: 10.1142/S0218127418500268. |
[17] |
J. Llibre and E. Ponce,
Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.
|
[18] |
Y. Tian and P. Yu,
Center conditions in a switching Bautin system, J. Differential Equations, 259 (2015), 1203-1226.
doi: 10.1016/j.jde.2015.02.044. |
[19] |
Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750126.
doi: 10.1142/S0218127417501267. |
[20] |
C. Zou and J. Yang,
Piecewise linear differential system with a center-saddle type singularity, J. Math. Anal. Appl., 459 (2018), 453-463.
doi: 10.1016/j.jmaa.2017.10.043. |
show all references
References:
[1] | S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, Wiley-IEEE Press, New York, 2001. Google Scholar |
[2] |
E. A. Barbashin, Introduction to the Theory of Stability, Wolters-Noordhoff Publishing, Groningen, 1970. |
[3] |
D. de Carvalho Braga and L. F. Mello,
Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones, Electron. J. Differential Equations, 2015 (2015), 1-12.
|
[4] |
P. T. Cardin and J. Torregrosa,
Limit cycles in planar piecewise linear differential systems with nonregular separation line, Phys. D, 337 (2016), 67-82.
doi: 10.1016/j.physd.2016.07.008. |
[5] |
J.-P. Francoise, H. Ji, D. Xiao and J. Yu,
Global dynamics of a piecewise smooth system for brain Lactate metabolism, Qual. Theory Dyn. Syst., 18 (2019), 315-332.
doi: 10.1007/s12346-018-0286-z. |
[6] |
M. Grau, F. Mañosas and J. Villadelprat,
A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[7] |
M. Han and L. Sheng,
Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.
doi: 10.11948/2015061. |
[8] |
M. Han and J. Yang,
The Maximum Number of Zeros of Functions with Parameters and Application to Differential Equations, J. Nonlinear Model. Anal., 3 (2021), 13-34.
doi: 10.12150/jnma.2021.13. |
[9] |
S.-M. Huan and X.-S. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[10] |
S. Karlin and W. J. Studden, Tchebycheff Systems: With Application in Analysis and Statistics, Interscience Publisher, 1966. |
[11] |
V. Křivan,
On the Gause predator-prey model with a refuge: a fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.
doi: 10.1016/j.jtbi.2011.01.016. |
[12] |
F. Liang and M. Han,
Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos, Solitons & Fractals, 45 (2012), 454-464.
doi: 10.1016/j.chaos.2011.09.013. |
[13] |
F. Liang, M. Han and V. G. Romanovski,
Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.
doi: 10.1016/j.na.2012.03.022. |
[14] |
F. Liang, V. G. Romanovski and D. Zhang,
Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solitons Fractals, 111 (2018), 18-34.
doi: 10.1016/j.chaos.2018.04.002. |
[15] |
X. Liu and M. Han,
Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 1379-1390.
doi: 10.1142/S021812741002654X. |
[16] |
Y, Liu, F. Li and P. Dang, Bifurcation analysis in a class of piecewise nonlinear systems with a nonsmooth heteroclinic loop, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850026.
doi: 10.1142/S0218127418500268. |
[17] |
J. Llibre and E. Ponce,
Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.
|
[18] |
Y. Tian and P. Yu,
Center conditions in a switching Bautin system, J. Differential Equations, 259 (2015), 1203-1226.
doi: 10.1016/j.jde.2015.02.044. |
[19] |
Y. Xiong, M. Han and V. G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750126.
doi: 10.1142/S0218127417501267. |
[20] |
C. Zou and J. Yang,
Piecewise linear differential system with a center-saddle type singularity, J. Math. Anal. Appl., 459 (2018), 453-463.
doi: 10.1016/j.jmaa.2017.10.043. |



[1] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[2] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[3] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[4] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[5] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[6] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[7] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[8] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[9] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[10] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[11] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[12] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[13] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[14] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[15] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[16] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[17] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[18] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[19] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[20] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]