
-
Previous Article
Complex dynamics in a quasi-periodic plasma perturbations model
- DCDS-B Home
- This Issue
-
Next Article
Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China
Mathematical analysis of a three-tiered food-web in the chemostat
a. | University of Tunis El Manar, National Engineering School of Tunis, LAMSIN, 1002, Tunis, Tunisia |
b. | ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France |
c. | University of Monastir, Higher Institute of Computer Science of Mahdia, 5111, Mahdia, Tunisia |
d. | University of Manouba, National School of Computer Science, 2010, Manouba, Tunisia |
A mechanistic model describing the anaerobic mineralization of chlorophenol in a three-step food-web is investigated. The model is a six-dimensional system of ordinary differential equations. In our study, the phenol and the hydrogen inflowing concentrations are taken into account as well as the maintenance terms. The case of a large class of growth kinetics is considered, instead of specific kinetics. We show that the system can have up to eight types of steady states and we analytically determine the necessary and sufficient conditions for their existence according to the operating parameters. In the particular case without maintenance, the local stability conditions of all steady states are determined. The bifurcation diagram shows the behavior of the process by varying the concentration of influent chlorophenol as the bifurcating parameter. It shows that the system exhibits a bi-stability where the positive steady state can lose stability undergoing a supercritical Hopf bifurcation with the emergence of a stable limit cycle.
References:
[1] |
N. Abdellatif, R. Fekih-Salem and T. Sari,
Competition for a single resource and coexistence of several species in the chemostat, Math. Biosci. Eng., 13 (2016), 631-652.
doi: 10.3934/mbe.2016012. |
[2] |
M. Ballyk, R. Staffeldt and I. Jawarneh,
A nutrient-prey-predator model: Stability and bifurcations, Discrete & Continuous Dyn. Syst. - S, 13 (2020), 2975-3004.
doi: 10.3934/dcdss.2020192. |
[3] |
B. Bar and T. Sari,
The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete & Continuous Dyn. Syst. - B, 25 (2020), 2093-2120.
doi: 10.3934/dcdsb.2019203. |
[4] |
D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyhuzhnyi, S. G. Pavlosthathis, A. Rozzi, W. T. M. Sanders, H. Siegrist and V. A. Vavilin,
The IWA anaerobic digestion model no 1 (ADM1), Water Sci Technol., 45 (2002), 66-73.
doi: 10.2166/wst.2002.0292. |
[5] |
B. Benyahia, T. Sari, B. Cherki and J. Harmand,
Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, J. Proc. Control, 22 (2012), 1008-1019.
doi: 10.1016/j.jprocont.2012.04.012. |
[6] |
O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi and J-P. Steyer,
Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnol. Bioeng., 75 (2001), 424-438.
doi: 10.1002/bit.10036. |
[7] |
Y. Daoud, N. Abdellatif, T. Sari and J. Harmand,
Steady state analysis of a syntrophic model: The effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), 1-22.
doi: 10.1051/mmnp/2018037. |
[8] |
P. De Leenheer, D. Angeli and E. D. Sontag,
Crowding effects promote coexistence in the chemostat, J. Math. Anal. Appl., 319 (2006), 48-60.
doi: 10.1016/j.jmaa.2006.02.036. |
[9] |
M. Dellal and B. Bar, Global analysis of a model of competition in the chemostat with internal inhibitor, Discrete & Continuous Dyn. Syst. - B, (2020).
doi: 10.3934/dcdsb.2020156. |
[10] |
M. Dellal, M. Lakrib and T. Sari,
The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Math. Biosci., 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004. |
[11] |
N. Dimitrova and M. Krastanov,
Nonlinear stabilizing control of an uncertain bioprocess model, Int. J. Appl. Math. Comput. Sci., 19 (2009), 441-454.
doi: 10.2478/v10006-009-0036-0. |
[12] |
M. El Hajji, F. Mazenc and J. Harmand,
A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641-656.
doi: 10.3934/mbe.2010.7.641. |
[13] |
M. El Hajji, N. Chorfi and M. Jleli, Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat, Electron. J. Differ. Eq., 2017, Paper No. 255, 13 pp. https://ejde.math.txstate.edu/Volumes/2017/255/elhajji.pdf. |
[14] |
R. Fekih-Salem, N. Abdellatif, T. Sari and J. Harmand, Analyse mathématique d'un modèle de digestion anaérobie à trois étapes, {ARIMA Rev.}, 17 (2014), 53–71. http://arima.inria.fr/017/017003.html. |
[15] |
R. Fekih-Salem, C. Lobry and T. Sari,
A density-dependent model of competition for one resource in the chemostat, Math. Biosci., 286 (2017), 104-122.
doi: 10.1016/j.mbs.2017.02.007. |
[16] |
S. R. Hansen and S. P. Hubbell,
Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.
doi: 10.1126/science.6767274. |
[17] |
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2017. |
[18] |
P. A. Hoskisson and G. Hobbs,
Continuous culture–making a comeback?, Microbiology, 151 (2005), 3153-3159.
doi: 10.1099/mic.0.27924-0. |
[19] |
S.-B. Hsu, C. A. Klausmeier and C.-J. Lin,
Analysis of a model of two parallel food chains, Discrete & Continuous Dyn. Syst. - B, 12 (2009), 337-359.
doi: 10.3934/dcdsb.2009.12.337. |
[20] |
J. Monod, La technique de culture continue: Théorie et applications, Selected Papers in Molecular Biology by Jacques Monod, (1978), 184–204
doi: 10.1016/B978-0-12-460482-7.50023-3. |
[21] |
S. Nouaoura, N. Abdellatif, R. Fekih-Salem and T. Sari, Mathematical analysis of a three-tiered model of anaerobic digestion, preprint (2020), hal-02540350. https://hal.archives-ouvertes.fr/hal-02540350. Google Scholar |
[22] |
A. Rapaport and M. Veruete,
A new proof of the competitive exclusion principle in the chemostat, Discrete & Continuous Dyn. Syst. - B, 24 (2019), 3755-3764.
doi: 10.3934/dcdsb.2018314. |
[23] |
T. Sari, M. El Hajji and J. Harmand,
The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627-645.
doi: 10.3934/mbe.2012.9.627. |
[24] |
T. Sari and J. Harmand,
A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1-9.
doi: 10.1016/j.mbs.2016.02.008. |
[25] |
T. Sari and M. J. Wade,
Generalised approach to modelling a three-tiered microbial food-web, Math. Biosci., 291 (2017), 21-37.
doi: 10.1016/j.mbs.2017.07.005. |
[26] |
M. Sbarciog, M. Loccufier and E. Noldus,
Determination of appropriate operating strategies for anaerobic digestion systems, Biochem. Eng. J., 51 (2010), 180-188.
doi: 10.1016/j.bej.2010.06.016. |
[27] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, UK, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[28] |
S. Sobieszek, M. J. Wade and G. S. K. Wolkowicz,
Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow, Math. Biosci. Eng., 17 (2020), 7045-7073.
doi: 10.3934/mbe.2020363. |
[29] |
M. J. Wade, Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes, Processes, 8 (2020), 888.
doi: 10.3390/pr8080888. |
[30] |
M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J.-J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry,
Perspectives in mathematical modelling for microbial ecology, Ecol. Modell., 321 (2016), 64-74.
doi: 10.1016/j.ecolmodel.2015.11.002. |
[31] |
M. J. Wade, R. W. Pattinson, N. G. Parker and J. Dolfing,
Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171-186.
doi: 10.1016/j.jtbi.2015.10.032. |
[32] |
M. Weedermann,
Analysis of a model for the effects of an external toxin on anaerobic digestion, Math. Biosci. Eng., 9 (2012), 445-459.
doi: 10.3934/mbe.2012.9.445. |
[33] |
G. S. K. Wolkowicz,
Successful invasion of a food web in a chemostat, Math. Biosci., 93 (1989), 249-268.
doi: 10.1016/0025-5564(89)90025-4. |
[34] |
A. Xu, J. Dolfing, T. P. Curtis, G. Montague and E. Martin,
Maintenance affects the stability of a two-tiered microbial 'food chain'?, J. Theor. Biol., 276 (2011), 35-41.
doi: 10.1016/j.jtbi.2011.01.026. |
show all references
References:
[1] |
N. Abdellatif, R. Fekih-Salem and T. Sari,
Competition for a single resource and coexistence of several species in the chemostat, Math. Biosci. Eng., 13 (2016), 631-652.
doi: 10.3934/mbe.2016012. |
[2] |
M. Ballyk, R. Staffeldt and I. Jawarneh,
A nutrient-prey-predator model: Stability and bifurcations, Discrete & Continuous Dyn. Syst. - S, 13 (2020), 2975-3004.
doi: 10.3934/dcdss.2020192. |
[3] |
B. Bar and T. Sari,
The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete & Continuous Dyn. Syst. - B, 25 (2020), 2093-2120.
doi: 10.3934/dcdsb.2019203. |
[4] |
D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyhuzhnyi, S. G. Pavlosthathis, A. Rozzi, W. T. M. Sanders, H. Siegrist and V. A. Vavilin,
The IWA anaerobic digestion model no 1 (ADM1), Water Sci Technol., 45 (2002), 66-73.
doi: 10.2166/wst.2002.0292. |
[5] |
B. Benyahia, T. Sari, B. Cherki and J. Harmand,
Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, J. Proc. Control, 22 (2012), 1008-1019.
doi: 10.1016/j.jprocont.2012.04.012. |
[6] |
O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi and J-P. Steyer,
Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnol. Bioeng., 75 (2001), 424-438.
doi: 10.1002/bit.10036. |
[7] |
Y. Daoud, N. Abdellatif, T. Sari and J. Harmand,
Steady state analysis of a syntrophic model: The effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), 1-22.
doi: 10.1051/mmnp/2018037. |
[8] |
P. De Leenheer, D. Angeli and E. D. Sontag,
Crowding effects promote coexistence in the chemostat, J. Math. Anal. Appl., 319 (2006), 48-60.
doi: 10.1016/j.jmaa.2006.02.036. |
[9] |
M. Dellal and B. Bar, Global analysis of a model of competition in the chemostat with internal inhibitor, Discrete & Continuous Dyn. Syst. - B, (2020).
doi: 10.3934/dcdsb.2020156. |
[10] |
M. Dellal, M. Lakrib and T. Sari,
The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Math. Biosci., 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004. |
[11] |
N. Dimitrova and M. Krastanov,
Nonlinear stabilizing control of an uncertain bioprocess model, Int. J. Appl. Math. Comput. Sci., 19 (2009), 441-454.
doi: 10.2478/v10006-009-0036-0. |
[12] |
M. El Hajji, F. Mazenc and J. Harmand,
A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641-656.
doi: 10.3934/mbe.2010.7.641. |
[13] |
M. El Hajji, N. Chorfi and M. Jleli, Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat, Electron. J. Differ. Eq., 2017, Paper No. 255, 13 pp. https://ejde.math.txstate.edu/Volumes/2017/255/elhajji.pdf. |
[14] |
R. Fekih-Salem, N. Abdellatif, T. Sari and J. Harmand, Analyse mathématique d'un modèle de digestion anaérobie à trois étapes, {ARIMA Rev.}, 17 (2014), 53–71. http://arima.inria.fr/017/017003.html. |
[15] |
R. Fekih-Salem, C. Lobry and T. Sari,
A density-dependent model of competition for one resource in the chemostat, Math. Biosci., 286 (2017), 104-122.
doi: 10.1016/j.mbs.2017.02.007. |
[16] |
S. R. Hansen and S. P. Hubbell,
Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.
doi: 10.1126/science.6767274. |
[17] |
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2017. |
[18] |
P. A. Hoskisson and G. Hobbs,
Continuous culture–making a comeback?, Microbiology, 151 (2005), 3153-3159.
doi: 10.1099/mic.0.27924-0. |
[19] |
S.-B. Hsu, C. A. Klausmeier and C.-J. Lin,
Analysis of a model of two parallel food chains, Discrete & Continuous Dyn. Syst. - B, 12 (2009), 337-359.
doi: 10.3934/dcdsb.2009.12.337. |
[20] |
J. Monod, La technique de culture continue: Théorie et applications, Selected Papers in Molecular Biology by Jacques Monod, (1978), 184–204
doi: 10.1016/B978-0-12-460482-7.50023-3. |
[21] |
S. Nouaoura, N. Abdellatif, R. Fekih-Salem and T. Sari, Mathematical analysis of a three-tiered model of anaerobic digestion, preprint (2020), hal-02540350. https://hal.archives-ouvertes.fr/hal-02540350. Google Scholar |
[22] |
A. Rapaport and M. Veruete,
A new proof of the competitive exclusion principle in the chemostat, Discrete & Continuous Dyn. Syst. - B, 24 (2019), 3755-3764.
doi: 10.3934/dcdsb.2018314. |
[23] |
T. Sari, M. El Hajji and J. Harmand,
The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627-645.
doi: 10.3934/mbe.2012.9.627. |
[24] |
T. Sari and J. Harmand,
A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1-9.
doi: 10.1016/j.mbs.2016.02.008. |
[25] |
T. Sari and M. J. Wade,
Generalised approach to modelling a three-tiered microbial food-web, Math. Biosci., 291 (2017), 21-37.
doi: 10.1016/j.mbs.2017.07.005. |
[26] |
M. Sbarciog, M. Loccufier and E. Noldus,
Determination of appropriate operating strategies for anaerobic digestion systems, Biochem. Eng. J., 51 (2010), 180-188.
doi: 10.1016/j.bej.2010.06.016. |
[27] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, UK, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[28] |
S. Sobieszek, M. J. Wade and G. S. K. Wolkowicz,
Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow, Math. Biosci. Eng., 17 (2020), 7045-7073.
doi: 10.3934/mbe.2020363. |
[29] |
M. J. Wade, Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes, Processes, 8 (2020), 888.
doi: 10.3390/pr8080888. |
[30] |
M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J.-J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry,
Perspectives in mathematical modelling for microbial ecology, Ecol. Modell., 321 (2016), 64-74.
doi: 10.1016/j.ecolmodel.2015.11.002. |
[31] |
M. J. Wade, R. W. Pattinson, N. G. Parker and J. Dolfing,
Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171-186.
doi: 10.1016/j.jtbi.2015.10.032. |
[32] |
M. Weedermann,
Analysis of a model for the effects of an external toxin on anaerobic digestion, Math. Biosci. Eng., 9 (2012), 445-459.
doi: 10.3934/mbe.2012.9.445. |
[33] |
G. S. K. Wolkowicz,
Successful invasion of a food web in a chemostat, Math. Biosci., 93 (1989), 249-268.
doi: 10.1016/0025-5564(89)90025-4. |
[34] |
A. Xu, J. Dolfing, T. P. Curtis, G. Montague and E. Martin,
Maintenance affects the stability of a two-tiered microbial 'food chain'?, J. Theor. Biol., 276 (2011), 35-41.
doi: 10.1016/j.jtbi.2011.01.026. |









Definition | |
Let | |
Let | |
Definition | |
Let | |
Let | |
SS1 | |
SS2 | |
SS3 | |
SS4 | |
SS5 | |
SS6 | |
SS7 | |
SS8 |
SS1 | |
SS2 | |
SS3 | |
SS4 | |
SS5 | |
SS6 | |
SS7 | |
SS8 |
Existence conditions | |
SS1 | Always exists |
SS2 | |
SS3 | |
SS4 | |
SS5 | |
SS6 | |
SS7 | |
SS8 |
Existence conditions | |
SS1 | Always exists |
SS2 | |
SS3 | |
SS4 | |
SS5 | |
SS6 | |
SS7 | |
SS8 |
Stability conditions | |
SS1 | |
SS2 | |
SS3 | |
SS4 | |
SS5 | |
SS6 | |
SS7 | |
SS8 |
Stability conditions | |
SS1 | |
SS2 | |
SS3 | |
SS4 | |
SS5 | |
SS6 | |
SS7 | |
SS8 |
Parameter | Wade et al. [31] | Unit |
29 26 35 | | |
0.053 0.302 3.5 2.5 | | |
| 0.019 0.04 0.06 |
Parameter | Wade et al. [31] | Unit |
29 26 35 | | |
0.053 0.302 3.5 2.5 | | |
| 0.019 0.04 0.06 |
Auxiliary function | Definition domain |
|
|
|
|
|
|
|
|
|
|
Auxiliary function | Definition domain |
|
|
|
|
|
|
|
|
|
|
Definition | Value |
Definition | Value |
Interval of |
SS1 | SS2 | SS3 | SS5 | SS6 | ||
U | S | ||||||
U | S | U | |||||
U | S | U | U | U | |||
U | U | U | U | U | S | ||
U | U | S | U | U | |||
U | U | S | U | U | U | ||
U | U | S | U | U | S |
Interval of |
SS1 | SS2 | SS3 | SS5 | SS6 | ||
U | S | ||||||
U | S | U | |||||
U | S | U | U | U | |||
U | U | U | U | U | S | ||
U | U | S | U | U | |||
U | U | S | U | U | U | ||
U | U | S | U | U | S |
Type of the bifurcation | |
Transcritical bifurcation of SS1 and SS3 | |
Saddle-node bifurcation of |
|
Transcritical bifurcation of SS2 and SS5 | |
Transcritical bifurcation of SS3 and SS5 | |
Transcritical bifurcation of |
|
Disappearance of the stable limit cycle | |
Supercritical Hopf bifurcation |
Type of the bifurcation | |
Transcritical bifurcation of SS1 and SS3 | |
Saddle-node bifurcation of |
|
Transcritical bifurcation of SS2 and SS5 | |
Transcritical bifurcation of SS3 and SS5 | |
Transcritical bifurcation of |
|
Disappearance of the stable limit cycle | |
Supercritical Hopf bifurcation |
SS1 | SS2 | SS3 | SS5 | SS6 | ||
Red | Blue | Purple | Dark Green | Magenta | Green | Cyan |
SS1 | SS2 | SS3 | SS5 | SS6 | ||
Red | Blue | Purple | Dark Green | Magenta | Green | Cyan |
Existence conditions | Stability conditions | |
SS1 | Always exists | |
SS2 | ||
SS3 | with | |
SS4 | ||
SS5 | ||
SS6 |
Existence conditions | Stability conditions | |
SS1 | Always exists | |
SS2 | ||
SS3 | with | |
SS4 | ||
SS5 | ||
SS6 |
[1] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[2] |
Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[3] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[4] |
Massimo Barnabei, Alessandro Borri, Andrea De Gaetano, Costanzo Manes, Pasquale Palumbo, Jorge Guerra Pires. A short-term food intake model involving glucose, insulin and ghrelin. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021114 |
[5] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[6] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[7] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[8] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[9] |
Qixiang Wen, Shenquan Liu, Bo Lu. Firing patterns and bifurcation analysis of neurons under electromagnetic induction. Electronic Research Archive, , () : -. doi: 10.3934/era.2021034 |
[10] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[11] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[12] |
Yuyue Zhang, Jicai Huang, Qihua Huang. The impact of toxins on competition dynamics of three species in a polluted aquatic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3043-3068. doi: 10.3934/dcdsb.2020219 |
[13] |
Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017 |
[14] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[15] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[16] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[17] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[18] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[19] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[20] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]