October  2021, 26(10): 5627-5640. doi: 10.3934/dcdsb.2020370

Stable transition layers in an unbalanced bistable equation

Instituto de Matemática e Computação, Universidade Federal de Itajubá, MG, Brazil

Received  July 2020 Revised  October 2020 Published  October 2021 Early access  December 2020

In this paper we are concerned with the existence of stable stationary solutions for the problem $ u_t = \epsilon^2(k_1^2(x) u_x)_x+k_2^2(x)g(u,x) $, $ (t,x)\in\mathbb{R}^+\times (0,1) $ subject to Neumann boundary condition. We suppose that $ k_1,k_2\in C^1(0,1) $ are positive functions and $ g $ is an unbalanced bistable function. We prove the existence of a family of stable stationary solutions developing internal transition layers in a specific sub-interval of $ (0,1) $. For this, we provide a general variational method inspired by the $ \Gamma $-convergence theory.

Citation: Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5627-5640. doi: 10.3934/dcdsb.2020370
References:
[1]

S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242. doi: 10.1016/0022-0396(87)90147-1.  Google Scholar

[2]

E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405. doi: 10.1016/S0022-0396(03)00176-1.  Google Scholar

[3]

E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118. doi: 10.1007/s00526-003-0229-6.  Google Scholar

[4]

E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188.  Google Scholar

[5]

A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38. doi: 10.1016/S0022-0396(02)00147-X.  Google Scholar

[6]

A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497. doi: 10.1016/S0362-546X(99)00276-X.  Google Scholar

[7]

A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376. doi: 10.1515/ans-2015-0205.  Google Scholar

[8]

A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135. doi: 10.1016/j.jmaa.2008.06.001.  Google Scholar

[9]

A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339. doi: 10.1007/s00028-015-0304-4.  Google Scholar

[10] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.  doi: 10.1201/b10802.  Google Scholar
[11]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981.  Google Scholar

[13]

F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631. doi: 10.1016/j.anihpc.2007.03.008.  Google Scholar

[14]

H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67. doi: 10.1016/j.na.2004.04.006.  Google Scholar

[15]

H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12.  Google Scholar

[16]

K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038.  Google Scholar

[17]

M. Sônego, A note on interface formation in singularly perturbed elliptic problems. doi: 10.1080/17476933.2020.1825395.  Google Scholar

[18]

M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533. doi: 10.7153/dea-08-29.  Google Scholar

[19]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260. doi: 10.1007/BF00253122.  Google Scholar

show all references

References:
[1]

S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242. doi: 10.1016/0022-0396(87)90147-1.  Google Scholar

[2]

E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405. doi: 10.1016/S0022-0396(03)00176-1.  Google Scholar

[3]

E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118. doi: 10.1007/s00526-003-0229-6.  Google Scholar

[4]

E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188.  Google Scholar

[5]

A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38. doi: 10.1016/S0022-0396(02)00147-X.  Google Scholar

[6]

A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497. doi: 10.1016/S0362-546X(99)00276-X.  Google Scholar

[7]

A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376. doi: 10.1515/ans-2015-0205.  Google Scholar

[8]

A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135. doi: 10.1016/j.jmaa.2008.06.001.  Google Scholar

[9]

A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339. doi: 10.1007/s00028-015-0304-4.  Google Scholar

[10] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.  doi: 10.1201/b10802.  Google Scholar
[11]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981.  Google Scholar

[13]

F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631. doi: 10.1016/j.anihpc.2007.03.008.  Google Scholar

[14]

H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67. doi: 10.1016/j.na.2004.04.006.  Google Scholar

[15]

H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12.  Google Scholar

[16]

K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038.  Google Scholar

[17]

M. Sônego, A note on interface formation in singularly perturbed elliptic problems. doi: 10.1080/17476933.2020.1825395.  Google Scholar

[18]

M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533. doi: 10.7153/dea-08-29.  Google Scholar

[19]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260. doi: 10.1007/BF00253122.  Google Scholar

Figure 1.  $ u_{\epsilon} $ developing two internal transition layer with interfaces at $ \overline{x}_1 $ and $ \overline{x}_2 $ (isolated local minima of $ \gamma $ in $ [x_1,x_2] $)
[1]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[2]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[3]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[4]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[5]

Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063

[6]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[7]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[8]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[9]

Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021147

[10]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[11]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[12]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[13]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[14]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[15]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[16]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[17]

Guangyue Huang, Wenyi Chen. Uniqueness for the solution of semi-linear elliptic Neumann problems in $\mathbb R^3$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1269-1273. doi: 10.3934/cpaa.2008.7.1269

[18]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[19]

Tuan Anh Dao, Hironori Michihisa. Study of semi-linear $ \sigma $-evolution equations with frictional and visco-elastic damping. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1581-1608. doi: 10.3934/cpaa.2020079

[20]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (91)
  • HTML views (279)
  • Cited by (0)

Other articles
by authors

[Back to Top]