
-
Previous Article
A theoretical approach to understanding rumor propagation dynamics in a spatially heterogeneous environment
- DCDS-B Home
- This Issue
-
Next Article
Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori
Stable transition layers in an unbalanced bistable equation
Instituto de Matemática e Computação, Universidade Federal de Itajubá, MG, Brazil |
In this paper we are concerned with the existence of stable stationary solutions for the problem $ u_t = \epsilon^2(k_1^2(x) u_x)_x+k_2^2(x)g(u,x) $, $ (t,x)\in\mathbb{R}^+\times (0,1) $ subject to Neumann boundary condition. We suppose that $ k_1,k_2\in C^1(0,1) $ are positive functions and $ g $ is an unbalanced bistable function. We prove the existence of a family of stable stationary solutions developing internal transition layers in a specific sub-interval of $ (0,1) $. For this, we provide a general variational method inspired by the $ \Gamma $-convergence theory.
References:
[1] |
S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242.
doi: 10.1016/0022-0396(87)90147-1. |
[2] |
E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405.
doi: 10.1016/S0022-0396(03)00176-1. |
[3] |
E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118.
doi: 10.1007/s00526-003-0229-6. |
[4] |
E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188. |
[5] |
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38.
doi: 10.1016/S0022-0396(02)00147-X. |
[6] |
A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497.
doi: 10.1016/S0362-546X(99)00276-X. |
[7] |
A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376.
doi: 10.1515/ans-2015-0205. |
[8] |
A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135.
doi: 10.1016/j.jmaa.2008.06.001. |
[9] |
A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339.
doi: 10.1007/s00028-015-0304-4. |
[10] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.
doi: 10.1201/b10802.![]() ![]() |
[11] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981. |
[13] |
F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631.
doi: 10.1016/j.anihpc.2007.03.008. |
[14] |
H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67.
doi: 10.1016/j.na.2004.04.006. |
[15] |
H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12. |
[16] |
K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038. |
[17] |
M. Sônego, A note on interface formation in singularly perturbed elliptic problems.
doi: 10.1080/17476933.2020.1825395. |
[18] |
M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533.
doi: 10.7153/dea-08-29. |
[19] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260.
doi: 10.1007/BF00253122. |
show all references
References:
[1] |
S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212–242.
doi: 10.1016/0022-0396(87)90147-1. |
[2] |
E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, Journal of Differential Equations, 194 (2003), 382–405.
doi: 10.1016/S0022-0396(03)00176-1. |
[3] |
E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations, 20 (2004), 93–118.
doi: 10.1007/s00526-003-0229-6. |
[4] |
E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, (1979), 131–188. |
[5] |
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, Journal of Differential Equations, 190 (2003) 16–38.
doi: 10.1016/S0022-0396(02)00147-X. |
[6] |
A. S. do Nascimento, Inner transition layers in a elliptic boundary value problem: a necessary condition, Nonlinear Analysis: Theory, Methods and Applications, 44 (2001), 487–497.
doi: 10.1016/S0362-546X(99)00276-X. |
[7] |
A. S. do Nascimento and M. Sônego, Stable Transition Layers to Singularly Perturbed Spatially Inhomogeneous Allen-Cahn Equation, Advanced Nonlinear Studies, 15 (2015), 363–376.
doi: 10.1515/ans-2015-0205. |
[8] |
A. S. do Nascimento and R. J. de Moura, Layered stable equilibria of a reaction-diffusion equation with nonlinear Neumann boundary condition, J. Math. Anal. Appl., 347 (2008), 123–135.
doi: 10.1016/j.jmaa.2008.06.001. |
[9] |
A. S. do Nascimento and M. Sônego, Stable equilibria of a singularly perturbed reaction-diffusion equation when the roots of the degenerate equation contact or intersect along a non-smooth hypersurface, Journal of Evolution Equations, 16 (2016), 317–339.
doi: 10.1007/s00028-015-0304-4. |
[10] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC press, 2011.
doi: 10.1201/b10802.![]() ![]() |
[11] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 840, 1981. |
[13] |
F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation, Ann. I. H. Poincare. AN, 25 (2008), 609–631.
doi: 10.1016/j.anihpc.2007.03.008. |
[14] |
H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis, 58 (2004), 45–67.
doi: 10.1016/j.na.2004.04.006. |
[15] |
H. Matsuzawa, Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation, Electronic Journal of Differential Equations, (2006), 1–12. |
[16] |
K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025–1038. |
[17] |
M. Sônego, A note on interface formation in singularly perturbed elliptic problems.
doi: 10.1080/17476933.2020.1825395. |
[18] |
M. Sônego, Patterns in a balanced bistable equation with hehterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521–533.
doi: 10.7153/dea-08-29. |
[19] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209–260.
doi: 10.1007/BF00253122. |

[1] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[2] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[3] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[4] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[5] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[6] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[7] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[9] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[10] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021082 |
[11] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021035 |
[12] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[13] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[14] |
Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021067 |
[15] |
Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021039 |
[16] |
Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021003 |
[17] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[18] |
Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032 |
[19] |
Nishant Sinha. Internal state recovery of Espresso stream cipher using conditional sampling resistance and TMDTO attack. Advances in Mathematics of Communications, 2021, 15 (3) : 539-556. doi: 10.3934/amc.2020081 |
[20] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]