• Previous Article
    Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise
  • DCDS-B Home
  • This Issue
  • Next Article
    Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises
October  2021, 26(10): 5661-5679. doi: 10.3934/dcdsb.2020375

Parameter identification on Abelian integrals to achieve Chebyshev property

1. 

Department of Applied Mathematics, Guangxi University of Finance and Economics, Nanning 530003, China

2. 

Department of Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7

* Corresponding author: pyu@uwo.ca

Received  May 2020 Revised  August 2020 Published  October 2021 Early access  December 2020

Fund Project: Pei Yu was supported by the Natural Sciences and Engineering Research Council of Canada (No. R2686A02). Xianbo Sun was partially supported by the Ontario Graduate Scholarship, NSFC(11861009), NSFGX(2018GXNSFAA138198) and Program for Innovative Team of GUFE(2018-2021)

Chebyshev criterion is a powerful tool in the study of limit cycle bifurcations in dynamical systems based on Abelian integrals, but it is difficult when the Abelian integrals involve parameters. In this paper, we consider the Abelian integrals on the periodic annuli of a Hamiltonian with one parameter, arising from the generalized Liénard system, and identify the parameter values such that the Abelian integrals have Chebyshev property. In particular, the bounds on the number of zeros of the Abelian integrals are derived for different parameter intervals. The main mathematical tools are transformations and polynomial boundary theory, which overcome the difficulties in symbolic computations and analysis, arising from large parametric-semi-algebraic systems.

Citation: Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5661-5679. doi: 10.3934/dcdsb.2020375
References:
[1]

V. I. Arnold, Ten problems, in Theory of Singularities and its Applications, Amer. Math. Soc., Providence, RI 1990, 1–8.  Google Scholar

[2]

B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory, Reidel, 1985. Google Scholar

[3]

J. CartwrightV. EguiluzE. Hernandez-Garcia and O. Piro, Dynamics of elastic excitable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 2197-2202.  doi: 10.1142/S0218127499001620.  Google Scholar

[4]

F. ChenC. LiJ. Libre and Z. Zhang, A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differential Equations, 221 (2006), 309-342.  doi: 10.1016/j.jde.2005.01.009.  Google Scholar

[5]

C. Chen and M. M. Maza, Algorithms for computing triangular decomposition of polynomial systems, J. Symbolic Comput., 47 (2012), 610-642.  doi: 10.1016/j.jsc.2011.12.023.  Google Scholar

[6]

L. Cveticanin, Strong Nonlinear Oscillators. Analytical Solutions, 2$^nd$ edition, Springer, Cham, 2018. doi: 10.1007/978-3-319-58826-1.  Google Scholar

[7]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysics J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[8]

M. GrauF. Ma$\widetilde{n}$osas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[9]

M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250296, 30 pp. doi: 10.1142/S0218127412502963.  Google Scholar

[10]

M. HanJ. YangA. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 20 (2008), 923-944.  doi: 10.1007/s10884-008-9108-3.  Google Scholar

[11]

M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Springer, London, 2012. doi: 10.1007/978-1-4471-2918-9.  Google Scholar

[12]

M. HanH. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 246 (2009), 129-163.  doi: 10.1016/j.jde.2008.06.039.  Google Scholar

[13]

D. Hilbert, Mathematical problems, Bull. Amer. Math, Soc., 8 (1902), 437-479.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[14]

R. Kazemi and H. R. Z. Zangeneh, Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2 (2012), 395-413.  doi: 10.11948/2012029.  Google Scholar

[15]

C. Li and C. Rousseau, A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: The cusp of order 4, J. Differential Equations, 79 (1989), 132-167.  doi: 10.1016/0022-0396(89)90117-4.  Google Scholar

[16]

C. Li and Z. Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[17]

A. Liénard, Etude des oscillations entretenues, Revue générale de l'électricité, 23 (1928), 901-912.   Google Scholar

[18]

C. Liu and D Xiao, The monotonicity of the ratio of two Abelian integrals, Trans. Amer. Math. Soc., 365 (2013), 5525-5544.  doi: 10.1090/S0002-9947-2013-05934-X.  Google Scholar

[19]

F. Ma$\widetilde{n}$osas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.  doi: 10.1016/j.jde.2011.05.026.  Google Scholar

[20]

P. Mardešić, Chebyshev Systems and the Versal Unfolding of the Cusps of Order $n$, vol. 57, Hermann, Paris, 1998. Google Scholar

[21]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE., 50 (1962), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[22]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.  doi: 10.1007/BF03025291.  Google Scholar

[23]

X. Sun, Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 16 (2017), 187-203.  doi: 10.1007/s12346-015-0186-4.  Google Scholar

[24]

X. Sun, Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam., 73 (2013), 869-880.  doi: 10.1007/s11071-013-0838-3.  Google Scholar

[25]

X. SunM. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 74 (2011), 2948-2965.  doi: 10.1016/j.na.2011.01.013.  Google Scholar

[26]

X. Sun and P. Yu, Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree $4$, J. Differential Equations, 267 (2019), 7369-7384.  doi: 10.1016/j.jde.2019.07.023.  Google Scholar

[27]

X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 289 (2016), 194-203.  doi: 10.1016/j.amc.2016.04.018.  Google Scholar

[28]

Y. Tsai, Numbers of relative equilibria in the planar four-vortex problem: Some special cases, J. Nonlinear Sci., 27 (2017), 775-815.  doi: 10.1007/s00332-016-9350-5.  Google Scholar

[29]

B. Van der Pol, The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, 22 (1934), 1051–1086. Google Scholar

[30]

D. Wang, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 25 (1998) 295–314. doi: 10.1006/jsco.1997.0177.  Google Scholar

[31]

W. T. Wu, On the decision problem and the mechanization of theorem-proving in elementary geometry, Sci. Sinica., 21 (1978) 159–172.  Google Scholar

[32]

L. Yang, X. Hou and B. Xia, A complete algorithm for automated discovering of a class of inequality-type theorems, Sci. China (Ser. F), 44 (2001) 33–49. doi: 10.1007/BF02713938.  Google Scholar

[33]

S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 19 (2020), Paper No. 33, 20 pp. doi: 10.1007/s12346-020-00348-7.  Google Scholar

[34]

L. Yang and B. Xia, Real solution classification for parametric semi-algebraic systems, in Dolzmann, Algorithmic Algebra and Logic, 2005,281–289. Google Scholar

[35]

P. Yu and W. Zhang, Complex dynamics in a unified SIR and HIV disease model: A bifurcation theory approach, J. Nonlinear Sci., 29 (2019), 2447-2500.  doi: 10.1007/s00332-019-09550-7.  Google Scholar

[36]

H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a period annulus with a unique two-saddle cycle in higher order Hamiltonian, Complexity, (2019), 5813596. doi: 10.1155/2019/5813596.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Ten problems, in Theory of Singularities and its Applications, Amer. Math. Soc., Providence, RI 1990, 1–8.  Google Scholar

[2]

B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory, Reidel, 1985. Google Scholar

[3]

J. CartwrightV. EguiluzE. Hernandez-Garcia and O. Piro, Dynamics of elastic excitable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 2197-2202.  doi: 10.1142/S0218127499001620.  Google Scholar

[4]

F. ChenC. LiJ. Libre and Z. Zhang, A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differential Equations, 221 (2006), 309-342.  doi: 10.1016/j.jde.2005.01.009.  Google Scholar

[5]

C. Chen and M. M. Maza, Algorithms for computing triangular decomposition of polynomial systems, J. Symbolic Comput., 47 (2012), 610-642.  doi: 10.1016/j.jsc.2011.12.023.  Google Scholar

[6]

L. Cveticanin, Strong Nonlinear Oscillators. Analytical Solutions, 2$^nd$ edition, Springer, Cham, 2018. doi: 10.1007/978-3-319-58826-1.  Google Scholar

[7]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysics J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[8]

M. GrauF. Ma$\widetilde{n}$osas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[9]

M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250296, 30 pp. doi: 10.1142/S0218127412502963.  Google Scholar

[10]

M. HanJ. YangA. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 20 (2008), 923-944.  doi: 10.1007/s10884-008-9108-3.  Google Scholar

[11]

M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Springer, London, 2012. doi: 10.1007/978-1-4471-2918-9.  Google Scholar

[12]

M. HanH. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 246 (2009), 129-163.  doi: 10.1016/j.jde.2008.06.039.  Google Scholar

[13]

D. Hilbert, Mathematical problems, Bull. Amer. Math, Soc., 8 (1902), 437-479.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[14]

R. Kazemi and H. R. Z. Zangeneh, Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2 (2012), 395-413.  doi: 10.11948/2012029.  Google Scholar

[15]

C. Li and C. Rousseau, A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: The cusp of order 4, J. Differential Equations, 79 (1989), 132-167.  doi: 10.1016/0022-0396(89)90117-4.  Google Scholar

[16]

C. Li and Z. Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[17]

A. Liénard, Etude des oscillations entretenues, Revue générale de l'électricité, 23 (1928), 901-912.   Google Scholar

[18]

C. Liu and D Xiao, The monotonicity of the ratio of two Abelian integrals, Trans. Amer. Math. Soc., 365 (2013), 5525-5544.  doi: 10.1090/S0002-9947-2013-05934-X.  Google Scholar

[19]

F. Ma$\widetilde{n}$osas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.  doi: 10.1016/j.jde.2011.05.026.  Google Scholar

[20]

P. Mardešić, Chebyshev Systems and the Versal Unfolding of the Cusps of Order $n$, vol. 57, Hermann, Paris, 1998. Google Scholar

[21]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE., 50 (1962), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[22]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.  doi: 10.1007/BF03025291.  Google Scholar

[23]

X. Sun, Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 16 (2017), 187-203.  doi: 10.1007/s12346-015-0186-4.  Google Scholar

[24]

X. Sun, Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam., 73 (2013), 869-880.  doi: 10.1007/s11071-013-0838-3.  Google Scholar

[25]

X. SunM. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 74 (2011), 2948-2965.  doi: 10.1016/j.na.2011.01.013.  Google Scholar

[26]

X. Sun and P. Yu, Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree $4$, J. Differential Equations, 267 (2019), 7369-7384.  doi: 10.1016/j.jde.2019.07.023.  Google Scholar

[27]

X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 289 (2016), 194-203.  doi: 10.1016/j.amc.2016.04.018.  Google Scholar

[28]

Y. Tsai, Numbers of relative equilibria in the planar four-vortex problem: Some special cases, J. Nonlinear Sci., 27 (2017), 775-815.  doi: 10.1007/s00332-016-9350-5.  Google Scholar

[29]

B. Van der Pol, The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, 22 (1934), 1051–1086. Google Scholar

[30]

D. Wang, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 25 (1998) 295–314. doi: 10.1006/jsco.1997.0177.  Google Scholar

[31]

W. T. Wu, On the decision problem and the mechanization of theorem-proving in elementary geometry, Sci. Sinica., 21 (1978) 159–172.  Google Scholar

[32]

L. Yang, X. Hou and B. Xia, A complete algorithm for automated discovering of a class of inequality-type theorems, Sci. China (Ser. F), 44 (2001) 33–49. doi: 10.1007/BF02713938.  Google Scholar

[33]

S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 19 (2020), Paper No. 33, 20 pp. doi: 10.1007/s12346-020-00348-7.  Google Scholar

[34]

L. Yang and B. Xia, Real solution classification for parametric semi-algebraic systems, in Dolzmann, Algorithmic Algebra and Logic, 2005,281–289. Google Scholar

[35]

P. Yu and W. Zhang, Complex dynamics in a unified SIR and HIV disease model: A bifurcation theory approach, J. Nonlinear Sci., 29 (2019), 2447-2500.  doi: 10.1007/s00332-019-09550-7.  Google Scholar

[36]

H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a period annulus with a unique two-saddle cycle in higher order Hamiltonian, Complexity, (2019), 5813596. doi: 10.1155/2019/5813596.  Google Scholar

Table 1.  Eight different topological phase eortraits of system (8)$ _{\epsilon = 0} $ with heteroclinic loops (red curves)
[1]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[2]

Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187

[3]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[4]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[5]

Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3085-3108. doi: 10.3934/dcds.2013.33.3085

[6]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[7]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[8]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[9]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[10]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[11]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[12]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[13]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[14]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[15]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[16]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[17]

Jin Ma, Shige Peng, Jiongmin Yong, Xunyu Zhou. A biographical note and tribute to xunjing li on his 80th birthday. Mathematical Control & Related Fields, 2015, 5 (3) : i-iii. doi: 10.3934/mcrf.2015.5.3i

[18]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[19]

Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445-461. doi: 10.3934/mbe.2011.8.445

[20]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (89)
  • HTML views (278)
  • Cited by (0)

Other articles
by authors

[Back to Top]