-
Previous Article
Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems
- DCDS-B Home
- This Issue
-
Next Article
Emergent behaviors of the generalized Lohe matrix model
Parameter identification on Abelian integrals to achieve Chebyshev property
1. | Department of Applied Mathematics, Guangxi University of Finance and Economics, Nanning 530003, China |
2. | Department of Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7 |
Chebyshev criterion is a powerful tool in the study of limit cycle bifurcations in dynamical systems based on Abelian integrals, but it is difficult when the Abelian integrals involve parameters. In this paper, we consider the Abelian integrals on the periodic annuli of a Hamiltonian with one parameter, arising from the generalized Liénard system, and identify the parameter values such that the Abelian integrals have Chebyshev property. In particular, the bounds on the number of zeros of the Abelian integrals are derived for different parameter intervals. The main mathematical tools are transformations and polynomial boundary theory, which overcome the difficulties in symbolic computations and analysis, arising from large parametric-semi-algebraic systems.
References:
[1] |
V. I. Arnold, Ten problems, in Theory of Singularities and its Applications, Amer. Math. Soc., Providence, RI 1990, 1–8. |
[2] |
B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory, Reidel, 1985. Google Scholar |
[3] |
J. Cartwright, V. Eguiluz, E. Hernandez-Garcia and O. Piro,
Dynamics of elastic excitable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 2197-2202.
doi: 10.1142/S0218127499001620. |
[4] |
F. Chen, C. Li, J. Libre and Z. Zhang,
A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differential Equations, 221 (2006), 309-342.
doi: 10.1016/j.jde.2005.01.009. |
[5] |
C. Chen and M. M. Maza,
Algorithms for computing triangular decomposition of polynomial systems, J. Symbolic Comput., 47 (2012), 610-642.
doi: 10.1016/j.jsc.2011.12.023. |
[6] |
L. Cveticanin, Strong Nonlinear Oscillators. Analytical Solutions, 2$^nd$ edition, Springer, Cham, 2018.
doi: 10.1007/978-3-319-58826-1. |
[7] |
R. FitzHugh,
Impulses and physiological states in theoretical models of nerve membrane, Biophysics J., 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6. |
[8] |
M. Grau, F. Ma$\widetilde{n}$osas and J. Villadelprat,
A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[9] |
M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250296, 30 pp.
doi: 10.1142/S0218127412502963. |
[10] |
M. Han, J. Yang, A. Tarta and Y. Gao,
Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 20 (2008), 923-944.
doi: 10.1007/s10884-008-9108-3. |
[11] |
M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Springer, London, 2012.
doi: 10.1007/978-1-4471-2918-9. |
[12] |
M. Han, H. Zang and J. Yang,
Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 246 (2009), 129-163.
doi: 10.1016/j.jde.2008.06.039. |
[13] |
D. Hilbert,
Mathematical problems, Bull. Amer. Math, Soc., 8 (1902), 437-479.
doi: 10.1090/S0002-9904-1902-00923-3. |
[14] |
R. Kazemi and H. R. Z. Zangeneh,
Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2 (2012), 395-413.
doi: 10.11948/2012029. |
[15] |
C. Li and C. Rousseau,
A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: The cusp of order 4, J. Differential Equations, 79 (1989), 132-167.
doi: 10.1016/0022-0396(89)90117-4. |
[16] |
C. Li and Z. Zhang,
A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.
doi: 10.1006/jdeq.1996.0017. |
[17] |
A. Liénard, Etude des oscillations entretenues, Revue générale de l'électricité, 23 (1928), 901-912. Google Scholar |
[18] |
C. Liu and D Xiao,
The monotonicity of the ratio of two Abelian integrals, Trans. Amer. Math. Soc., 365 (2013), 5525-5544.
doi: 10.1090/S0002-9947-2013-05934-X. |
[19] |
F. Ma$\widetilde{n}$osas and J. Villadelprat,
Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.
doi: 10.1016/j.jde.2011.05.026. |
[20] |
P. Mardešić, Chebyshev Systems and the Versal Unfolding of the Cusps of Order $n$, vol. 57, Hermann, Paris, 1998. Google Scholar |
[21] |
J. Nagumo, S. Arimoto and S. Yoshizawa,
An active pulse transmission line simulating nerve axon, Proc. IRE., 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235. |
[22] |
S. Smale,
Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
[23] |
X. Sun,
Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 16 (2017), 187-203.
doi: 10.1007/s12346-015-0186-4. |
[24] |
X. Sun,
Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam., 73 (2013), 869-880.
doi: 10.1007/s11071-013-0838-3. |
[25] |
X. Sun, M. Han and J. Yang,
Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 74 (2011), 2948-2965.
doi: 10.1016/j.na.2011.01.013. |
[26] |
X. Sun and P. Yu,
Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree $4$, J. Differential Equations, 267 (2019), 7369-7384.
doi: 10.1016/j.jde.2019.07.023. |
[27] |
X. Sun and L. Zhao,
Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 289 (2016), 194-203.
doi: 10.1016/j.amc.2016.04.018. |
[28] |
Y. Tsai,
Numbers of relative equilibria in the planar four-vortex problem: Some special cases, J. Nonlinear Sci., 27 (2017), 775-815.
doi: 10.1007/s00332-016-9350-5. |
[29] |
B. Van der Pol, The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, 22 (1934), 1051–1086. Google Scholar |
[30] |
D. Wang, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 25 (1998) 295–314.
doi: 10.1006/jsco.1997.0177. |
[31] |
W. T. Wu, On the decision problem and the mechanization of theorem-proving in elementary geometry, Sci. Sinica., 21 (1978) 159–172. |
[32] |
L. Yang, X. Hou and B. Xia, A complete algorithm for automated discovering of a class of inequality-type theorems, Sci. China (Ser. F), 44 (2001) 33–49.
doi: 10.1007/BF02713938. |
[33] |
S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 19 (2020), Paper No. 33, 20 pp.
doi: 10.1007/s12346-020-00348-7. |
[34] |
L. Yang and B. Xia, Real solution classification for parametric semi-algebraic systems, in Dolzmann, Algorithmic Algebra and Logic, 2005,281–289. Google Scholar |
[35] |
P. Yu and W. Zhang,
Complex dynamics in a unified SIR and HIV disease model: A bifurcation theory approach, J. Nonlinear Sci., 29 (2019), 2447-2500.
doi: 10.1007/s00332-019-09550-7. |
[36] |
H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a period annulus with a unique two-saddle cycle in higher order Hamiltonian, Complexity, (2019), 5813596.
doi: 10.1155/2019/5813596. |
show all references
References:
[1] |
V. I. Arnold, Ten problems, in Theory of Singularities and its Applications, Amer. Math. Soc., Providence, RI 1990, 1–8. |
[2] |
B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory, Reidel, 1985. Google Scholar |
[3] |
J. Cartwright, V. Eguiluz, E. Hernandez-Garcia and O. Piro,
Dynamics of elastic excitable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 2197-2202.
doi: 10.1142/S0218127499001620. |
[4] |
F. Chen, C. Li, J. Libre and Z. Zhang,
A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differential Equations, 221 (2006), 309-342.
doi: 10.1016/j.jde.2005.01.009. |
[5] |
C. Chen and M. M. Maza,
Algorithms for computing triangular decomposition of polynomial systems, J. Symbolic Comput., 47 (2012), 610-642.
doi: 10.1016/j.jsc.2011.12.023. |
[6] |
L. Cveticanin, Strong Nonlinear Oscillators. Analytical Solutions, 2$^nd$ edition, Springer, Cham, 2018.
doi: 10.1007/978-3-319-58826-1. |
[7] |
R. FitzHugh,
Impulses and physiological states in theoretical models of nerve membrane, Biophysics J., 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6. |
[8] |
M. Grau, F. Ma$\widetilde{n}$osas and J. Villadelprat,
A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[9] |
M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250296, 30 pp.
doi: 10.1142/S0218127412502963. |
[10] |
M. Han, J. Yang, A. Tarta and Y. Gao,
Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 20 (2008), 923-944.
doi: 10.1007/s10884-008-9108-3. |
[11] |
M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Springer, London, 2012.
doi: 10.1007/978-1-4471-2918-9. |
[12] |
M. Han, H. Zang and J. Yang,
Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 246 (2009), 129-163.
doi: 10.1016/j.jde.2008.06.039. |
[13] |
D. Hilbert,
Mathematical problems, Bull. Amer. Math, Soc., 8 (1902), 437-479.
doi: 10.1090/S0002-9904-1902-00923-3. |
[14] |
R. Kazemi and H. R. Z. Zangeneh,
Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2 (2012), 395-413.
doi: 10.11948/2012029. |
[15] |
C. Li and C. Rousseau,
A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: The cusp of order 4, J. Differential Equations, 79 (1989), 132-167.
doi: 10.1016/0022-0396(89)90117-4. |
[16] |
C. Li and Z. Zhang,
A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.
doi: 10.1006/jdeq.1996.0017. |
[17] |
A. Liénard, Etude des oscillations entretenues, Revue générale de l'électricité, 23 (1928), 901-912. Google Scholar |
[18] |
C. Liu and D Xiao,
The monotonicity of the ratio of two Abelian integrals, Trans. Amer. Math. Soc., 365 (2013), 5525-5544.
doi: 10.1090/S0002-9947-2013-05934-X. |
[19] |
F. Ma$\widetilde{n}$osas and J. Villadelprat,
Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.
doi: 10.1016/j.jde.2011.05.026. |
[20] |
P. Mardešić, Chebyshev Systems and the Versal Unfolding of the Cusps of Order $n$, vol. 57, Hermann, Paris, 1998. Google Scholar |
[21] |
J. Nagumo, S. Arimoto and S. Yoshizawa,
An active pulse transmission line simulating nerve axon, Proc. IRE., 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235. |
[22] |
S. Smale,
Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
[23] |
X. Sun,
Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 16 (2017), 187-203.
doi: 10.1007/s12346-015-0186-4. |
[24] |
X. Sun,
Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam., 73 (2013), 869-880.
doi: 10.1007/s11071-013-0838-3. |
[25] |
X. Sun, M. Han and J. Yang,
Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 74 (2011), 2948-2965.
doi: 10.1016/j.na.2011.01.013. |
[26] |
X. Sun and P. Yu,
Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree $4$, J. Differential Equations, 267 (2019), 7369-7384.
doi: 10.1016/j.jde.2019.07.023. |
[27] |
X. Sun and L. Zhao,
Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 289 (2016), 194-203.
doi: 10.1016/j.amc.2016.04.018. |
[28] |
Y. Tsai,
Numbers of relative equilibria in the planar four-vortex problem: Some special cases, J. Nonlinear Sci., 27 (2017), 775-815.
doi: 10.1007/s00332-016-9350-5. |
[29] |
B. Van der Pol, The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, 22 (1934), 1051–1086. Google Scholar |
[30] |
D. Wang, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 25 (1998) 295–314.
doi: 10.1006/jsco.1997.0177. |
[31] |
W. T. Wu, On the decision problem and the mechanization of theorem-proving in elementary geometry, Sci. Sinica., 21 (1978) 159–172. |
[32] |
L. Yang, X. Hou and B. Xia, A complete algorithm for automated discovering of a class of inequality-type theorems, Sci. China (Ser. F), 44 (2001) 33–49.
doi: 10.1007/BF02713938. |
[33] |
S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 19 (2020), Paper No. 33, 20 pp.
doi: 10.1007/s12346-020-00348-7. |
[34] |
L. Yang and B. Xia, Real solution classification for parametric semi-algebraic systems, in Dolzmann, Algorithmic Algebra and Logic, 2005,281–289. Google Scholar |
[35] |
P. Yu and W. Zhang,
Complex dynamics in a unified SIR and HIV disease model: A bifurcation theory approach, J. Nonlinear Sci., 29 (2019), 2447-2500.
doi: 10.1007/s00332-019-09550-7. |
[36] |
H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a period annulus with a unique two-saddle cycle in higher order Hamiltonian, Complexity, (2019), 5813596.
doi: 10.1155/2019/5813596. |
![]() |
![]() |
[1] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[2] |
Chiun-Chuan Chen, Yuan Lou, Hirokazu Ninomiya, Peter Polacik, Xuefeng Wang. Preface: DCDS-A special issue to honor Wei-Ming Ni's 70th birthday. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : ⅰ-ⅱ. doi: 10.3934/dcds.2020171 |
[3] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[4] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[5] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[6] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[7] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[8] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[9] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[10] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[11] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[12] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[13] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[14] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[15] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[16] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[17] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[18] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[19] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[20] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]