doi: 10.3934/dcdsb.2020375

Parameter identification on Abelian integrals to achieve Chebyshev property

1. 

Department of Applied Mathematics, Guangxi University of Finance and Economics, Nanning 530003, China

2. 

Department of Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7

* Corresponding author: pyu@uwo.ca

Received  May 2020 Revised  August 2020 Published  December 2020

Fund Project: Pei Yu was supported by the Natural Sciences and Engineering Research Council of Canada (No. R2686A02). Xianbo Sun was partially supported by the Ontario Graduate Scholarship, NSFC(11861009), NSFGX(2018GXNSFAA138198) and Program for Innovative Team of GUFE(2018-2021)

Chebyshev criterion is a powerful tool in the study of limit cycle bifurcations in dynamical systems based on Abelian integrals, but it is difficult when the Abelian integrals involve parameters. In this paper, we consider the Abelian integrals on the periodic annuli of a Hamiltonian with one parameter, arising from the generalized Liénard system, and identify the parameter values such that the Abelian integrals have Chebyshev property. In particular, the bounds on the number of zeros of the Abelian integrals are derived for different parameter intervals. The main mathematical tools are transformations and polynomial boundary theory, which overcome the difficulties in symbolic computations and analysis, arising from large parametric-semi-algebraic systems.

Citation: Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020375
References:
[1]

V. I. Arnold, Ten problems, in Theory of Singularities and its Applications, Amer. Math. Soc., Providence, RI 1990, 1–8.  Google Scholar

[2]

B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory, Reidel, 1985. Google Scholar

[3]

J. CartwrightV. EguiluzE. Hernandez-Garcia and O. Piro, Dynamics of elastic excitable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 2197-2202.  doi: 10.1142/S0218127499001620.  Google Scholar

[4]

F. ChenC. LiJ. Libre and Z. Zhang, A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differential Equations, 221 (2006), 309-342.  doi: 10.1016/j.jde.2005.01.009.  Google Scholar

[5]

C. Chen and M. M. Maza, Algorithms for computing triangular decomposition of polynomial systems, J. Symbolic Comput., 47 (2012), 610-642.  doi: 10.1016/j.jsc.2011.12.023.  Google Scholar

[6]

L. Cveticanin, Strong Nonlinear Oscillators. Analytical Solutions, 2$^nd$ edition, Springer, Cham, 2018. doi: 10.1007/978-3-319-58826-1.  Google Scholar

[7]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysics J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[8]

M. GrauF. Ma$\widetilde{n}$osas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[9]

M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250296, 30 pp. doi: 10.1142/S0218127412502963.  Google Scholar

[10]

M. HanJ. YangA. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 20 (2008), 923-944.  doi: 10.1007/s10884-008-9108-3.  Google Scholar

[11]

M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Springer, London, 2012. doi: 10.1007/978-1-4471-2918-9.  Google Scholar

[12]

M. HanH. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 246 (2009), 129-163.  doi: 10.1016/j.jde.2008.06.039.  Google Scholar

[13]

D. Hilbert, Mathematical problems, Bull. Amer. Math, Soc., 8 (1902), 437-479.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[14]

R. Kazemi and H. R. Z. Zangeneh, Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2 (2012), 395-413.  doi: 10.11948/2012029.  Google Scholar

[15]

C. Li and C. Rousseau, A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: The cusp of order 4, J. Differential Equations, 79 (1989), 132-167.  doi: 10.1016/0022-0396(89)90117-4.  Google Scholar

[16]

C. Li and Z. Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[17]

A. Liénard, Etude des oscillations entretenues, Revue générale de l'électricité, 23 (1928), 901-912.   Google Scholar

[18]

C. Liu and D Xiao, The monotonicity of the ratio of two Abelian integrals, Trans. Amer. Math. Soc., 365 (2013), 5525-5544.  doi: 10.1090/S0002-9947-2013-05934-X.  Google Scholar

[19]

F. Ma$\widetilde{n}$osas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.  doi: 10.1016/j.jde.2011.05.026.  Google Scholar

[20]

P. Mardešić, Chebyshev Systems and the Versal Unfolding of the Cusps of Order $n$, vol. 57, Hermann, Paris, 1998. Google Scholar

[21]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE., 50 (1962), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[22]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.  doi: 10.1007/BF03025291.  Google Scholar

[23]

X. Sun, Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 16 (2017), 187-203.  doi: 10.1007/s12346-015-0186-4.  Google Scholar

[24]

X. Sun, Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam., 73 (2013), 869-880.  doi: 10.1007/s11071-013-0838-3.  Google Scholar

[25]

X. SunM. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 74 (2011), 2948-2965.  doi: 10.1016/j.na.2011.01.013.  Google Scholar

[26]

X. Sun and P. Yu, Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree $4$, J. Differential Equations, 267 (2019), 7369-7384.  doi: 10.1016/j.jde.2019.07.023.  Google Scholar

[27]

X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 289 (2016), 194-203.  doi: 10.1016/j.amc.2016.04.018.  Google Scholar

[28]

Y. Tsai, Numbers of relative equilibria in the planar four-vortex problem: Some special cases, J. Nonlinear Sci., 27 (2017), 775-815.  doi: 10.1007/s00332-016-9350-5.  Google Scholar

[29]

B. Van der Pol, The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, 22 (1934), 1051–1086. Google Scholar

[30]

D. Wang, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 25 (1998) 295–314. doi: 10.1006/jsco.1997.0177.  Google Scholar

[31]

W. T. Wu, On the decision problem and the mechanization of theorem-proving in elementary geometry, Sci. Sinica., 21 (1978) 159–172.  Google Scholar

[32]

L. Yang, X. Hou and B. Xia, A complete algorithm for automated discovering of a class of inequality-type theorems, Sci. China (Ser. F), 44 (2001) 33–49. doi: 10.1007/BF02713938.  Google Scholar

[33]

S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 19 (2020), Paper No. 33, 20 pp. doi: 10.1007/s12346-020-00348-7.  Google Scholar

[34]

L. Yang and B. Xia, Real solution classification for parametric semi-algebraic systems, in Dolzmann, Algorithmic Algebra and Logic, 2005,281–289. Google Scholar

[35]

P. Yu and W. Zhang, Complex dynamics in a unified SIR and HIV disease model: A bifurcation theory approach, J. Nonlinear Sci., 29 (2019), 2447-2500.  doi: 10.1007/s00332-019-09550-7.  Google Scholar

[36]

H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a period annulus with a unique two-saddle cycle in higher order Hamiltonian, Complexity, (2019), 5813596. doi: 10.1155/2019/5813596.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Ten problems, in Theory of Singularities and its Applications, Amer. Math. Soc., Providence, RI 1990, 1–8.  Google Scholar

[2]

B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory, Reidel, 1985. Google Scholar

[3]

J. CartwrightV. EguiluzE. Hernandez-Garcia and O. Piro, Dynamics of elastic excitable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 2197-2202.  doi: 10.1142/S0218127499001620.  Google Scholar

[4]

F. ChenC. LiJ. Libre and Z. Zhang, A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differential Equations, 221 (2006), 309-342.  doi: 10.1016/j.jde.2005.01.009.  Google Scholar

[5]

C. Chen and M. M. Maza, Algorithms for computing triangular decomposition of polynomial systems, J. Symbolic Comput., 47 (2012), 610-642.  doi: 10.1016/j.jsc.2011.12.023.  Google Scholar

[6]

L. Cveticanin, Strong Nonlinear Oscillators. Analytical Solutions, 2$^nd$ edition, Springer, Cham, 2018. doi: 10.1007/978-3-319-58826-1.  Google Scholar

[7]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysics J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[8]

M. GrauF. Ma$\widetilde{n}$osas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[9]

M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250296, 30 pp. doi: 10.1142/S0218127412502963.  Google Scholar

[10]

M. HanJ. YangA. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 20 (2008), 923-944.  doi: 10.1007/s10884-008-9108-3.  Google Scholar

[11]

M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Springer, London, 2012. doi: 10.1007/978-1-4471-2918-9.  Google Scholar

[12]

M. HanH. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 246 (2009), 129-163.  doi: 10.1016/j.jde.2008.06.039.  Google Scholar

[13]

D. Hilbert, Mathematical problems, Bull. Amer. Math, Soc., 8 (1902), 437-479.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[14]

R. Kazemi and H. R. Z. Zangeneh, Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2 (2012), 395-413.  doi: 10.11948/2012029.  Google Scholar

[15]

C. Li and C. Rousseau, A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: The cusp of order 4, J. Differential Equations, 79 (1989), 132-167.  doi: 10.1016/0022-0396(89)90117-4.  Google Scholar

[16]

C. Li and Z. Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[17]

A. Liénard, Etude des oscillations entretenues, Revue générale de l'électricité, 23 (1928), 901-912.   Google Scholar

[18]

C. Liu and D Xiao, The monotonicity of the ratio of two Abelian integrals, Trans. Amer. Math. Soc., 365 (2013), 5525-5544.  doi: 10.1090/S0002-9947-2013-05934-X.  Google Scholar

[19]

F. Ma$\widetilde{n}$osas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.  doi: 10.1016/j.jde.2011.05.026.  Google Scholar

[20]

P. Mardešić, Chebyshev Systems and the Versal Unfolding of the Cusps of Order $n$, vol. 57, Hermann, Paris, 1998. Google Scholar

[21]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE., 50 (1962), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[22]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.  doi: 10.1007/BF03025291.  Google Scholar

[23]

X. Sun, Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 16 (2017), 187-203.  doi: 10.1007/s12346-015-0186-4.  Google Scholar

[24]

X. Sun, Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam., 73 (2013), 869-880.  doi: 10.1007/s11071-013-0838-3.  Google Scholar

[25]

X. SunM. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 74 (2011), 2948-2965.  doi: 10.1016/j.na.2011.01.013.  Google Scholar

[26]

X. Sun and P. Yu, Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree $4$, J. Differential Equations, 267 (2019), 7369-7384.  doi: 10.1016/j.jde.2019.07.023.  Google Scholar

[27]

X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 289 (2016), 194-203.  doi: 10.1016/j.amc.2016.04.018.  Google Scholar

[28]

Y. Tsai, Numbers of relative equilibria in the planar four-vortex problem: Some special cases, J. Nonlinear Sci., 27 (2017), 775-815.  doi: 10.1007/s00332-016-9350-5.  Google Scholar

[29]

B. Van der Pol, The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, 22 (1934), 1051–1086. Google Scholar

[30]

D. Wang, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 25 (1998) 295–314. doi: 10.1006/jsco.1997.0177.  Google Scholar

[31]

W. T. Wu, On the decision problem and the mechanization of theorem-proving in elementary geometry, Sci. Sinica., 21 (1978) 159–172.  Google Scholar

[32]

L. Yang, X. Hou and B. Xia, A complete algorithm for automated discovering of a class of inequality-type theorems, Sci. China (Ser. F), 44 (2001) 33–49. doi: 10.1007/BF02713938.  Google Scholar

[33]

S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 19 (2020), Paper No. 33, 20 pp. doi: 10.1007/s12346-020-00348-7.  Google Scholar

[34]

L. Yang and B. Xia, Real solution classification for parametric semi-algebraic systems, in Dolzmann, Algorithmic Algebra and Logic, 2005,281–289. Google Scholar

[35]

P. Yu and W. Zhang, Complex dynamics in a unified SIR and HIV disease model: A bifurcation theory approach, J. Nonlinear Sci., 29 (2019), 2447-2500.  doi: 10.1007/s00332-019-09550-7.  Google Scholar

[36]

H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a period annulus with a unique two-saddle cycle in higher order Hamiltonian, Complexity, (2019), 5813596. doi: 10.1155/2019/5813596.  Google Scholar

Table 1.  Eight different topological phase eortraits of system (8)$ _{\epsilon = 0} $ with heteroclinic loops (red curves)
[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Chiun-Chuan Chen, Yuan Lou, Hirokazu Ninomiya, Peter Polacik, Xuefeng Wang. Preface: DCDS-A special issue to honor Wei-Ming Ni's 70th birthday. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : ⅰ-ⅱ. doi: 10.3934/dcds.2020171

[3]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[4]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[5]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[6]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[7]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[8]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[9]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[10]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[11]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[14]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[15]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[16]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[17]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[18]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[20]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]