
-
Previous Article
On a matrix-valued PDE characterizing a contraction metric for a periodic orbit
- DCDS-B Home
- This Issue
-
Next Article
Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve
System specific triangulations for the construction of CPA Lyapunov functions
1. | Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom |
2. | Faculty of Physical Sciences, University of Iceland, 107 Reykjavik, Iceland |
Recently, a transformation of the vertices of a regular triangulation of $ {\mathbb {R}}^n $ with vertices in the lattice $ \mathbb{Z}^n $ was introduced, which distributes the vertices with approximate rotational symmetry properties around the origin. We prove that the simplices of the transformed triangulation are $ (h, d) $-bounded, a type of non-degeneracy particularly useful in the numerical computation of Lyapunov functions for nonlinear systems using the CPA (continuous piecewise affine) method. Additionally, we discuss and give examples of how this transformed triangulation can be used together with a Lyapunov function for a linearization to compute a Lyapunov function for a nonlinear system with the CPA method using considerably fewer simplices than when using a regular triangulation.
References:
[1] |
S. Albertsson, P. Giesl, S. Gudmundsson and S. Hafstein,
Simplicial complex with approximate rotational symmetry: A general class of simplicial complexes, J. Comput. Appl. Math., 363 (2020), 413-425.
doi: 10.1016/j.cam.2019.06.019. |
[2] |
J. Anderson and A. Papachristodoulou,
Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.
doi: 10.3934/dcdsb.2015.20.2361. |
[3] |
J. Björnsson, S. Gudmundsson and S. Hafstein, Class library in C++ to compute Lyapunov functions for nonlinear systems, In Proceedings of MICNON, 1st Conference on Modelling, Identification and Control of Nonlinear Systems, no. 0155, 2015,788–793. Google Scholar |
[4] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Math., vol. 1904, Springer, Berlin, 2007. |
[5] |
P. Giesl and S. Hafstein, Implementation of a fan-like triangulation for the CPA method to compute Lyapunov functions, In Proceedings of the 2014 American Control Conference, Portland, OR, 2014, 2989–2994.
doi: 10.1016/j.jmaa.2013.08.014. |
[6] |
P. Giesl and S. Hafstein,
Revised CPA method to compute Lyapunov functions for nonlinear systems, J. Math. Anal. Appl., 410 (2014), 292-306.
doi: 10.1016/j.jmaa.2013.08.014. |
[7] |
P. Giesl and S. Hafstein,
Computation and verification of Lyapunov functions, SIAM J. Appl. Dyn. Syst., 14 (2015), 1663-1698.
doi: 10.1137/140988802. |
[8] |
P. Giesl and S. Hafstein,
Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[9] |
G. Golub and C. van Loan, Matrix Computations, 4th edition, John Hopkins University Press, Baltimore, MD, 2013.
![]() |
[10] |
S. Hafstein,
A constructive converse Lyapunov theorem on exponential stability, Discrete Contin. Dyn. Syst., 10 (2004), 657-678.
doi: 10.3934/dcds.2004.10.657. |
[11] |
S. Hafstein,
A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations, Dyn. Syst., 20 (2005), 281-299.
doi: 10.1080/14689360500164873. |
[12] |
S. Hafstein, Implementation of simplicial complexes for CPA functions in C++11 using the armadillo linear algebra library, In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), Reykjavik, Iceland, 2013, 49–57. Google Scholar |
[13] |
S. Hafstein, Simulation and Modeling Methodologies, Technologies and Applications, volume 873 of Advances in Intelligent Systems and Computing, chapter Fast Algorithms for Computing Continuous Piecewise Affine Lyapunov Functions, Springer, 2019,274–299. Google Scholar |
[14] |
S. Hafstein and A. Valfells, Study of dynamical systems by fast numerical computation of Lyapunov functions, In Proceedings of the 14th International Conference on Dynamical Systems: Theory and Applications (DSTA), Mathematical and Numerical Aspects of Dynamical System Analysis, 2017,220–240. Google Scholar |
[15] |
W. Hahn, Stability of Motion, Springer-Verlag New York, Inc., New York, 1967. |
[16] |
R. Kamyar and M. Peet,
Polynomial optimization with applications to stability analysis and control – alternatives to sum of squares, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2383-2417.
doi: 10.3934/dcdsb.2015.20.2383. |
[17] |
H. Khalil, Nonlinear Systems, 3rd edition, Pearson, 2002. Google Scholar |
[18] |
A. M. Lyapunov,
The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.
doi: 10.1080/00207179208934253. |
[19] |
S. Marinósson,
Lyapunov function construction for ordinary differential equations with linear programming, Dyn. Syst., 17 (2002), 137-150.
doi: 10.1080/0268111011011847. |
[20] |
P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza, Ph.D thesis, California Institute of Technology, Pasadena, California, 2000. Google Scholar |
[21] |
S. Ratschan and Z. She,
Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control Optim., 48 (2010), 4377-4394.
doi: 10.1137/090749955. |
[22] |
S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-3108-8. |
[23] |
J. Sherman and W. Morrison,
Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Statistics, 21 (1950), 124-127.
doi: 10.1214/aoms/1177729893. |
[24] |
G. Valmorbida and J. Anderson,
Region of attraction estimation using invariant sets and rational Lyapunov functions, Automatica J. IFAC, 75 (2017), 37-45.
doi: 10.1016/j.automatica.2016.09.003. |
[25] |
A. Vannelli and M. Vidyasagar,
Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems, Automatica J. IFAC, 21 (1985), 69-80.
doi: 10.1016/0005-1098(85)90099-8. |
[26] |
M. Vidyasagar, Nonlinear System Analysis, 2nd edition, Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719185. |
[27] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method, Publications of the Mathematical Society of Japan, No. 9. The Mathematical Society of Japan, Tokyo, 1966. |
[28] |
V. I. Zubov, Methods of A. M. Lyapunov and Their Application, P. Noordhoff Ltd., Groningen, 1964. |
show all references
References:
[1] |
S. Albertsson, P. Giesl, S. Gudmundsson and S. Hafstein,
Simplicial complex with approximate rotational symmetry: A general class of simplicial complexes, J. Comput. Appl. Math., 363 (2020), 413-425.
doi: 10.1016/j.cam.2019.06.019. |
[2] |
J. Anderson and A. Papachristodoulou,
Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.
doi: 10.3934/dcdsb.2015.20.2361. |
[3] |
J. Björnsson, S. Gudmundsson and S. Hafstein, Class library in C++ to compute Lyapunov functions for nonlinear systems, In Proceedings of MICNON, 1st Conference on Modelling, Identification and Control of Nonlinear Systems, no. 0155, 2015,788–793. Google Scholar |
[4] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Math., vol. 1904, Springer, Berlin, 2007. |
[5] |
P. Giesl and S. Hafstein, Implementation of a fan-like triangulation for the CPA method to compute Lyapunov functions, In Proceedings of the 2014 American Control Conference, Portland, OR, 2014, 2989–2994.
doi: 10.1016/j.jmaa.2013.08.014. |
[6] |
P. Giesl and S. Hafstein,
Revised CPA method to compute Lyapunov functions for nonlinear systems, J. Math. Anal. Appl., 410 (2014), 292-306.
doi: 10.1016/j.jmaa.2013.08.014. |
[7] |
P. Giesl and S. Hafstein,
Computation and verification of Lyapunov functions, SIAM J. Appl. Dyn. Syst., 14 (2015), 1663-1698.
doi: 10.1137/140988802. |
[8] |
P. Giesl and S. Hafstein,
Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[9] |
G. Golub and C. van Loan, Matrix Computations, 4th edition, John Hopkins University Press, Baltimore, MD, 2013.
![]() |
[10] |
S. Hafstein,
A constructive converse Lyapunov theorem on exponential stability, Discrete Contin. Dyn. Syst., 10 (2004), 657-678.
doi: 10.3934/dcds.2004.10.657. |
[11] |
S. Hafstein,
A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations, Dyn. Syst., 20 (2005), 281-299.
doi: 10.1080/14689360500164873. |
[12] |
S. Hafstein, Implementation of simplicial complexes for CPA functions in C++11 using the armadillo linear algebra library, In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), Reykjavik, Iceland, 2013, 49–57. Google Scholar |
[13] |
S. Hafstein, Simulation and Modeling Methodologies, Technologies and Applications, volume 873 of Advances in Intelligent Systems and Computing, chapter Fast Algorithms for Computing Continuous Piecewise Affine Lyapunov Functions, Springer, 2019,274–299. Google Scholar |
[14] |
S. Hafstein and A. Valfells, Study of dynamical systems by fast numerical computation of Lyapunov functions, In Proceedings of the 14th International Conference on Dynamical Systems: Theory and Applications (DSTA), Mathematical and Numerical Aspects of Dynamical System Analysis, 2017,220–240. Google Scholar |
[15] |
W. Hahn, Stability of Motion, Springer-Verlag New York, Inc., New York, 1967. |
[16] |
R. Kamyar and M. Peet,
Polynomial optimization with applications to stability analysis and control – alternatives to sum of squares, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2383-2417.
doi: 10.3934/dcdsb.2015.20.2383. |
[17] |
H. Khalil, Nonlinear Systems, 3rd edition, Pearson, 2002. Google Scholar |
[18] |
A. M. Lyapunov,
The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.
doi: 10.1080/00207179208934253. |
[19] |
S. Marinósson,
Lyapunov function construction for ordinary differential equations with linear programming, Dyn. Syst., 17 (2002), 137-150.
doi: 10.1080/0268111011011847. |
[20] |
P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza, Ph.D thesis, California Institute of Technology, Pasadena, California, 2000. Google Scholar |
[21] |
S. Ratschan and Z. She,
Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control Optim., 48 (2010), 4377-4394.
doi: 10.1137/090749955. |
[22] |
S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-3108-8. |
[23] |
J. Sherman and W. Morrison,
Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Statistics, 21 (1950), 124-127.
doi: 10.1214/aoms/1177729893. |
[24] |
G. Valmorbida and J. Anderson,
Region of attraction estimation using invariant sets and rational Lyapunov functions, Automatica J. IFAC, 75 (2017), 37-45.
doi: 10.1016/j.automatica.2016.09.003. |
[25] |
A. Vannelli and M. Vidyasagar,
Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems, Automatica J. IFAC, 21 (1985), 69-80.
doi: 10.1016/0005-1098(85)90099-8. |
[26] |
M. Vidyasagar, Nonlinear System Analysis, 2nd edition, Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719185. |
[27] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method, Publications of the Mathematical Society of Japan, No. 9. The Mathematical Society of Japan, Tokyo, 1966. |
[28] |
V. I. Zubov, Methods of A. M. Lyapunov and Their Application, P. Noordhoff Ltd., Groningen, 1964. |






[1] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048 |
[2] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[3] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406 |
[4] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[5] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[6] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377 |
[7] |
Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047 |
[8] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[9] |
Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061 |
[10] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[11] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004 |
[12] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[13] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[14] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
[15] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[16] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011 |
[17] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[18] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[19] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[20] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]