
-
Previous Article
Recent developments on a singular predator-prey model
- DCDS-B Home
- This Issue
-
Next Article
Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve
System specific triangulations for the construction of CPA Lyapunov functions
1. | Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom |
2. | Faculty of Physical Sciences, University of Iceland, 107 Reykjavik, Iceland |
Recently, a transformation of the vertices of a regular triangulation of $ {\mathbb {R}}^n $ with vertices in the lattice $ \mathbb{Z}^n $ was introduced, which distributes the vertices with approximate rotational symmetry properties around the origin. We prove that the simplices of the transformed triangulation are $ (h, d) $-bounded, a type of non-degeneracy particularly useful in the numerical computation of Lyapunov functions for nonlinear systems using the CPA (continuous piecewise affine) method. Additionally, we discuss and give examples of how this transformed triangulation can be used together with a Lyapunov function for a linearization to compute a Lyapunov function for a nonlinear system with the CPA method using considerably fewer simplices than when using a regular triangulation.
References:
[1] |
S. Albertsson, P. Giesl, S. Gudmundsson and S. Hafstein,
Simplicial complex with approximate rotational symmetry: A general class of simplicial complexes, J. Comput. Appl. Math., 363 (2020), 413-425.
doi: 10.1016/j.cam.2019.06.019. |
[2] |
J. Anderson and A. Papachristodoulou,
Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.
doi: 10.3934/dcdsb.2015.20.2361. |
[3] |
J. Björnsson, S. Gudmundsson and S. Hafstein, Class library in C++ to compute Lyapunov functions for nonlinear systems, In Proceedings of MICNON, 1st Conference on Modelling, Identification and Control of Nonlinear Systems, no. 0155, 2015,788–793. Google Scholar |
[4] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Math., vol. 1904, Springer, Berlin, 2007. |
[5] |
P. Giesl and S. Hafstein, Implementation of a fan-like triangulation for the CPA method to compute Lyapunov functions, In Proceedings of the 2014 American Control Conference, Portland, OR, 2014, 2989–2994.
doi: 10.1016/j.jmaa.2013.08.014. |
[6] |
P. Giesl and S. Hafstein,
Revised CPA method to compute Lyapunov functions for nonlinear systems, J. Math. Anal. Appl., 410 (2014), 292-306.
doi: 10.1016/j.jmaa.2013.08.014. |
[7] |
P. Giesl and S. Hafstein,
Computation and verification of Lyapunov functions, SIAM J. Appl. Dyn. Syst., 14 (2015), 1663-1698.
doi: 10.1137/140988802. |
[8] |
P. Giesl and S. Hafstein,
Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[9] |
G. Golub and C. van Loan, Matrix Computations, 4th edition, John Hopkins University Press, Baltimore, MD, 2013.
![]() |
[10] |
S. Hafstein,
A constructive converse Lyapunov theorem on exponential stability, Discrete Contin. Dyn. Syst., 10 (2004), 657-678.
doi: 10.3934/dcds.2004.10.657. |
[11] |
S. Hafstein,
A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations, Dyn. Syst., 20 (2005), 281-299.
doi: 10.1080/14689360500164873. |
[12] |
S. Hafstein, Implementation of simplicial complexes for CPA functions in C++11 using the armadillo linear algebra library, In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), Reykjavik, Iceland, 2013, 49–57. Google Scholar |
[13] |
S. Hafstein, Simulation and Modeling Methodologies, Technologies and Applications, volume 873 of Advances in Intelligent Systems and Computing, chapter Fast Algorithms for Computing Continuous Piecewise Affine Lyapunov Functions, Springer, 2019,274–299. Google Scholar |
[14] |
S. Hafstein and A. Valfells, Study of dynamical systems by fast numerical computation of Lyapunov functions, In Proceedings of the 14th International Conference on Dynamical Systems: Theory and Applications (DSTA), Mathematical and Numerical Aspects of Dynamical System Analysis, 2017,220–240. Google Scholar |
[15] |
W. Hahn, Stability of Motion, Springer-Verlag New York, Inc., New York, 1967. |
[16] |
R. Kamyar and M. Peet,
Polynomial optimization with applications to stability analysis and control – alternatives to sum of squares, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2383-2417.
doi: 10.3934/dcdsb.2015.20.2383. |
[17] |
H. Khalil, Nonlinear Systems, 3rd edition, Pearson, 2002. Google Scholar |
[18] |
A. M. Lyapunov,
The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.
doi: 10.1080/00207179208934253. |
[19] |
S. Marinósson,
Lyapunov function construction for ordinary differential equations with linear programming, Dyn. Syst., 17 (2002), 137-150.
doi: 10.1080/0268111011011847. |
[20] |
P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza, Ph.D thesis, California Institute of Technology, Pasadena, California, 2000. Google Scholar |
[21] |
S. Ratschan and Z. She,
Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control Optim., 48 (2010), 4377-4394.
doi: 10.1137/090749955. |
[22] |
S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-3108-8. |
[23] |
J. Sherman and W. Morrison,
Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Statistics, 21 (1950), 124-127.
doi: 10.1214/aoms/1177729893. |
[24] |
G. Valmorbida and J. Anderson,
Region of attraction estimation using invariant sets and rational Lyapunov functions, Automatica J. IFAC, 75 (2017), 37-45.
doi: 10.1016/j.automatica.2016.09.003. |
[25] |
A. Vannelli and M. Vidyasagar,
Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems, Automatica J. IFAC, 21 (1985), 69-80.
doi: 10.1016/0005-1098(85)90099-8. |
[26] |
M. Vidyasagar, Nonlinear System Analysis, 2nd edition, Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719185. |
[27] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method, Publications of the Mathematical Society of Japan, No. 9. The Mathematical Society of Japan, Tokyo, 1966. |
[28] |
V. I. Zubov, Methods of A. M. Lyapunov and Their Application, P. Noordhoff Ltd., Groningen, 1964. |
show all references
References:
[1] |
S. Albertsson, P. Giesl, S. Gudmundsson and S. Hafstein,
Simplicial complex with approximate rotational symmetry: A general class of simplicial complexes, J. Comput. Appl. Math., 363 (2020), 413-425.
doi: 10.1016/j.cam.2019.06.019. |
[2] |
J. Anderson and A. Papachristodoulou,
Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.
doi: 10.3934/dcdsb.2015.20.2361. |
[3] |
J. Björnsson, S. Gudmundsson and S. Hafstein, Class library in C++ to compute Lyapunov functions for nonlinear systems, In Proceedings of MICNON, 1st Conference on Modelling, Identification and Control of Nonlinear Systems, no. 0155, 2015,788–793. Google Scholar |
[4] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Math., vol. 1904, Springer, Berlin, 2007. |
[5] |
P. Giesl and S. Hafstein, Implementation of a fan-like triangulation for the CPA method to compute Lyapunov functions, In Proceedings of the 2014 American Control Conference, Portland, OR, 2014, 2989–2994.
doi: 10.1016/j.jmaa.2013.08.014. |
[6] |
P. Giesl and S. Hafstein,
Revised CPA method to compute Lyapunov functions for nonlinear systems, J. Math. Anal. Appl., 410 (2014), 292-306.
doi: 10.1016/j.jmaa.2013.08.014. |
[7] |
P. Giesl and S. Hafstein,
Computation and verification of Lyapunov functions, SIAM J. Appl. Dyn. Syst., 14 (2015), 1663-1698.
doi: 10.1137/140988802. |
[8] |
P. Giesl and S. Hafstein,
Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[9] |
G. Golub and C. van Loan, Matrix Computations, 4th edition, John Hopkins University Press, Baltimore, MD, 2013.
![]() |
[10] |
S. Hafstein,
A constructive converse Lyapunov theorem on exponential stability, Discrete Contin. Dyn. Syst., 10 (2004), 657-678.
doi: 10.3934/dcds.2004.10.657. |
[11] |
S. Hafstein,
A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations, Dyn. Syst., 20 (2005), 281-299.
doi: 10.1080/14689360500164873. |
[12] |
S. Hafstein, Implementation of simplicial complexes for CPA functions in C++11 using the armadillo linear algebra library, In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), Reykjavik, Iceland, 2013, 49–57. Google Scholar |
[13] |
S. Hafstein, Simulation and Modeling Methodologies, Technologies and Applications, volume 873 of Advances in Intelligent Systems and Computing, chapter Fast Algorithms for Computing Continuous Piecewise Affine Lyapunov Functions, Springer, 2019,274–299. Google Scholar |
[14] |
S. Hafstein and A. Valfells, Study of dynamical systems by fast numerical computation of Lyapunov functions, In Proceedings of the 14th International Conference on Dynamical Systems: Theory and Applications (DSTA), Mathematical and Numerical Aspects of Dynamical System Analysis, 2017,220–240. Google Scholar |
[15] |
W. Hahn, Stability of Motion, Springer-Verlag New York, Inc., New York, 1967. |
[16] |
R. Kamyar and M. Peet,
Polynomial optimization with applications to stability analysis and control – alternatives to sum of squares, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2383-2417.
doi: 10.3934/dcdsb.2015.20.2383. |
[17] |
H. Khalil, Nonlinear Systems, 3rd edition, Pearson, 2002. Google Scholar |
[18] |
A. M. Lyapunov,
The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.
doi: 10.1080/00207179208934253. |
[19] |
S. Marinósson,
Lyapunov function construction for ordinary differential equations with linear programming, Dyn. Syst., 17 (2002), 137-150.
doi: 10.1080/0268111011011847. |
[20] |
P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza, Ph.D thesis, California Institute of Technology, Pasadena, California, 2000. Google Scholar |
[21] |
S. Ratschan and Z. She,
Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control Optim., 48 (2010), 4377-4394.
doi: 10.1137/090749955. |
[22] |
S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-3108-8. |
[23] |
J. Sherman and W. Morrison,
Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Statistics, 21 (1950), 124-127.
doi: 10.1214/aoms/1177729893. |
[24] |
G. Valmorbida and J. Anderson,
Region of attraction estimation using invariant sets and rational Lyapunov functions, Automatica J. IFAC, 75 (2017), 37-45.
doi: 10.1016/j.automatica.2016.09.003. |
[25] |
A. Vannelli and M. Vidyasagar,
Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems, Automatica J. IFAC, 21 (1985), 69-80.
doi: 10.1016/0005-1098(85)90099-8. |
[26] |
M. Vidyasagar, Nonlinear System Analysis, 2nd edition, Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719185. |
[27] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method, Publications of the Mathematical Society of Japan, No. 9. The Mathematical Society of Japan, Tokyo, 1966. |
[28] |
V. I. Zubov, Methods of A. M. Lyapunov and Their Application, P. Noordhoff Ltd., Groningen, 1964. |






[1] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[2] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[3] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[4] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[5] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[6] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[7] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[8] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[9] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[10] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[11] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[12] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[13] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[14] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[15] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[16] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[17] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[18] |
Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020119 |
[19] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[20] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]