• Previous Article
    Codimension one and two bifurcations in Cattaneo-Christov heat flux model
  • DCDS-B Home
  • This Issue
  • Next Article
    Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation
doi: 10.3934/dcdsb.2021001

Feedback synchronization of FHN cellular neural networks

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

* Corresponding author: Yuncheng You

Received  July 2020 Revised  October 2020 Published  December 2020

In this work we study the synchronization of ring-structured cellular neural networks modeled by the lattice FitzHugh-Nagumo equations with boundary feedback. Through the uniform estimates of solutions and the analysis of dissipative dynamics, the synchronization of this type neural networks is proved under the condition that the boundary gap signal exceeds the adjustable threshold.

Citation: Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021001
References:
[1]

B. Ambrosio and M. A. Aziz-Alaoui, Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type, ESAIM: Proceedings, 39 (2013), 15-24.  doi: 10.1051/proc/201339003.  Google Scholar

[2]

A. ArenasA. Diaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153.  doi: 10.1016/j.physrep.2008.09.002.  Google Scholar

[3]

A. Cattani, FitzHugh-Nagumo equations with generalized diffusive coupling, Math. Biosci. Eng., 11 (2014), 203-215.  doi: 10.3934/mbe.2014.11.203.  Google Scholar

[4]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part I, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 746-751.  doi: 10.1109/81.473583.  Google Scholar

[5]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part II, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 752-756.   Google Scholar

[6]

L. O. ChuaM. HaslerG. S. Moschytz and J. Neirynck, Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 559-577.  doi: 10.1109/81.473564.  Google Scholar

[7] L. O. Chua and T. Roska, Cellular Neural Networks and Visual Computing, Cambridge University Press, Cambridge, UK, 2002.  doi: 10.1017/CBO9780511754494.  Google Scholar
[8]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits and Systems, 35 (1988), 1257-1272.  doi: 10.1109/31.7600.  Google Scholar

[9]

L. O. Chua and L. Yang, Cellular neural networks: Application, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.  Google Scholar

[10]

S. M. Dickson, Stochastic Neural Network Dynamics: Synchronization and Control, Ph. D. Dissertation, Loughborough University, UK, 2014. Google Scholar

[11]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[12]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences, 81 (1984), 3088-3092.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[13]

M. M. Ibrahim and I. H. Jung, Complex synchronization of a ring-structured network of FitzHugh-Nagumo neurons with single and dual state gap junctions under ionic gates and external electrical disturbance, IEEE Access, 7 (2019), 57894-57906.  doi: 10.1109/ACCESS.2019.2913872.  Google Scholar

[14]

S. IndoliaA. K. GoswamiS. P. Mishra and P. Asopa, Conceptual understanding of convolutional neural networks - a deep learning approach, Procedia Computer Science, 132 (2018), 679-688.  doi: 10.1016/j.procs.2018.05.069.  Google Scholar

[15]

C. Phan, L. Skrzypek and Y. You, Dynamics and synchronization of complex neural networks with boundary coupling, preprint, arXiv: 2004.09988, 2020. Google Scholar

[16]

C. Phan and Y. You, Synchronization of boundary coupled Hindmarsh-Rose neuron network, Nonlinear Anal. Real World Appl., 55 (2020), 103139, 13pp. doi: 10.1016/j.nonrwa.2020.103139.  Google Scholar

[17]

C. Quiñinao and J. D. Touboul, Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model, SIAM J. Appl. Dyn. Syst., 19 (2020), 788-827.  doi: 10.1137/19M1283884.  Google Scholar

[18]

H. Serrano-Guerrero et al., Chaotic synchronization in star coupled networks of three-dimensional cellular neural networks and its applications in communications, International J. Nonlinear Science and Numerical Simulation, 11 (2010), 571-580.   Google Scholar

[19]

L. Skrzypek and Y. You, Dynamics and synchronization of boundary coupled FitzHugh-Nagumo neural networks, Appl. Math. Comput., 388 (2021), 125545, 13 pp. doi: 10.1016/j.amc.2020.125545.  Google Scholar

[20]

A. Slavova, Applications of some mathematical methods in the analysis of cellular neural networks, J. Comput. Appl. Math., 114 (2000), 387-404.  doi: 10.1016/S0377-0427(99)00277-0.  Google Scholar

[21]

A. Slavova, Cellular Neural Networks: Dynamics and Modeling, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0261-4.  Google Scholar

[22]

X. F. Wang, Complex networks, topology, dynamics and synchronization, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 885-916.  doi: 10.1142/S0218127402004802.  Google Scholar

[23]

D. Q. WeiX. S. Luo and Y. L. Zou, Firing activity of complex space-clamped FitzHugh-Nagumo neural networks, European Physical Journal B, 63 (2008), 279-282.  doi: 10.1140/epjb/e2008-00227-5.  Google Scholar

[24]

Z. Yong et al., The synchronization of FitzHugh-Nagumo neuron network coupled by gap junction, Chinese Physics B, 17 (2008), 2297-2303.   Google Scholar

show all references

References:
[1]

B. Ambrosio and M. A. Aziz-Alaoui, Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type, ESAIM: Proceedings, 39 (2013), 15-24.  doi: 10.1051/proc/201339003.  Google Scholar

[2]

A. ArenasA. Diaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153.  doi: 10.1016/j.physrep.2008.09.002.  Google Scholar

[3]

A. Cattani, FitzHugh-Nagumo equations with generalized diffusive coupling, Math. Biosci. Eng., 11 (2014), 203-215.  doi: 10.3934/mbe.2014.11.203.  Google Scholar

[4]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part I, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 746-751.  doi: 10.1109/81.473583.  Google Scholar

[5]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part II, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 752-756.   Google Scholar

[6]

L. O. ChuaM. HaslerG. S. Moschytz and J. Neirynck, Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 559-577.  doi: 10.1109/81.473564.  Google Scholar

[7] L. O. Chua and T. Roska, Cellular Neural Networks and Visual Computing, Cambridge University Press, Cambridge, UK, 2002.  doi: 10.1017/CBO9780511754494.  Google Scholar
[8]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits and Systems, 35 (1988), 1257-1272.  doi: 10.1109/31.7600.  Google Scholar

[9]

L. O. Chua and L. Yang, Cellular neural networks: Application, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.  Google Scholar

[10]

S. M. Dickson, Stochastic Neural Network Dynamics: Synchronization and Control, Ph. D. Dissertation, Loughborough University, UK, 2014. Google Scholar

[11]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[12]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences, 81 (1984), 3088-3092.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[13]

M. M. Ibrahim and I. H. Jung, Complex synchronization of a ring-structured network of FitzHugh-Nagumo neurons with single and dual state gap junctions under ionic gates and external electrical disturbance, IEEE Access, 7 (2019), 57894-57906.  doi: 10.1109/ACCESS.2019.2913872.  Google Scholar

[14]

S. IndoliaA. K. GoswamiS. P. Mishra and P. Asopa, Conceptual understanding of convolutional neural networks - a deep learning approach, Procedia Computer Science, 132 (2018), 679-688.  doi: 10.1016/j.procs.2018.05.069.  Google Scholar

[15]

C. Phan, L. Skrzypek and Y. You, Dynamics and synchronization of complex neural networks with boundary coupling, preprint, arXiv: 2004.09988, 2020. Google Scholar

[16]

C. Phan and Y. You, Synchronization of boundary coupled Hindmarsh-Rose neuron network, Nonlinear Anal. Real World Appl., 55 (2020), 103139, 13pp. doi: 10.1016/j.nonrwa.2020.103139.  Google Scholar

[17]

C. Quiñinao and J. D. Touboul, Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model, SIAM J. Appl. Dyn. Syst., 19 (2020), 788-827.  doi: 10.1137/19M1283884.  Google Scholar

[18]

H. Serrano-Guerrero et al., Chaotic synchronization in star coupled networks of three-dimensional cellular neural networks and its applications in communications, International J. Nonlinear Science and Numerical Simulation, 11 (2010), 571-580.   Google Scholar

[19]

L. Skrzypek and Y. You, Dynamics and synchronization of boundary coupled FitzHugh-Nagumo neural networks, Appl. Math. Comput., 388 (2021), 125545, 13 pp. doi: 10.1016/j.amc.2020.125545.  Google Scholar

[20]

A. Slavova, Applications of some mathematical methods in the analysis of cellular neural networks, J. Comput. Appl. Math., 114 (2000), 387-404.  doi: 10.1016/S0377-0427(99)00277-0.  Google Scholar

[21]

A. Slavova, Cellular Neural Networks: Dynamics and Modeling, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0261-4.  Google Scholar

[22]

X. F. Wang, Complex networks, topology, dynamics and synchronization, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 885-916.  doi: 10.1142/S0218127402004802.  Google Scholar

[23]

D. Q. WeiX. S. Luo and Y. L. Zou, Firing activity of complex space-clamped FitzHugh-Nagumo neural networks, European Physical Journal B, 63 (2008), 279-282.  doi: 10.1140/epjb/e2008-00227-5.  Google Scholar

[24]

Z. Yong et al., The synchronization of FitzHugh-Nagumo neuron network coupled by gap junction, Chinese Physics B, 17 (2008), 2297-2303.   Google Scholar

[1]

Fuzhi Li, Dongmei Xu. Regular dynamics for stochastic Fitzhugh-Nagumo systems with additive noise on thin domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3517-3542. doi: 10.3934/dcdsb.2020244

[2]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[5]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[7]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[8]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[9]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[10]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[11]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[12]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[13]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[14]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[15]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[16]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[17]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[18]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[19]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[20]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

2019 Impact Factor: 1.27

Article outline

[Back to Top]