doi: 10.3934/dcdsb.2021001

Feedback synchronization of FHN cellular neural networks

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

* Corresponding author: Yuncheng You

Received  July 2020 Revised  October 2020 Published  December 2020

In this work we study the synchronization of ring-structured cellular neural networks modeled by the lattice FitzHugh-Nagumo equations with boundary feedback. Through the uniform estimates of solutions and the analysis of dissipative dynamics, the synchronization of this type neural networks is proved under the condition that the boundary gap signal exceeds the adjustable threshold.

Citation: Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021001
References:
[1]

B. Ambrosio and M. A. Aziz-Alaoui, Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type, ESAIM: Proceedings, 39 (2013), 15-24.  doi: 10.1051/proc/201339003.  Google Scholar

[2]

A. ArenasA. Diaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153.  doi: 10.1016/j.physrep.2008.09.002.  Google Scholar

[3]

A. Cattani, FitzHugh-Nagumo equations with generalized diffusive coupling, Math. Biosci. Eng., 11 (2014), 203-215.  doi: 10.3934/mbe.2014.11.203.  Google Scholar

[4]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part I, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 746-751.  doi: 10.1109/81.473583.  Google Scholar

[5]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part II, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 752-756.   Google Scholar

[6]

L. O. ChuaM. HaslerG. S. Moschytz and J. Neirynck, Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 559-577.  doi: 10.1109/81.473564.  Google Scholar

[7] L. O. Chua and T. Roska, Cellular Neural Networks and Visual Computing, Cambridge University Press, Cambridge, UK, 2002.  doi: 10.1017/CBO9780511754494.  Google Scholar
[8]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits and Systems, 35 (1988), 1257-1272.  doi: 10.1109/31.7600.  Google Scholar

[9]

L. O. Chua and L. Yang, Cellular neural networks: Application, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.  Google Scholar

[10]

S. M. Dickson, Stochastic Neural Network Dynamics: Synchronization and Control, Ph. D. Dissertation, Loughborough University, UK, 2014. Google Scholar

[11]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[12]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences, 81 (1984), 3088-3092.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[13]

M. M. Ibrahim and I. H. Jung, Complex synchronization of a ring-structured network of FitzHugh-Nagumo neurons with single and dual state gap junctions under ionic gates and external electrical disturbance, IEEE Access, 7 (2019), 57894-57906.  doi: 10.1109/ACCESS.2019.2913872.  Google Scholar

[14]

S. IndoliaA. K. GoswamiS. P. Mishra and P. Asopa, Conceptual understanding of convolutional neural networks - a deep learning approach, Procedia Computer Science, 132 (2018), 679-688.  doi: 10.1016/j.procs.2018.05.069.  Google Scholar

[15]

C. Phan, L. Skrzypek and Y. You, Dynamics and synchronization of complex neural networks with boundary coupling, preprint, arXiv: 2004.09988, 2020. Google Scholar

[16]

C. Phan and Y. You, Synchronization of boundary coupled Hindmarsh-Rose neuron network, Nonlinear Anal. Real World Appl., 55 (2020), 103139, 13pp. doi: 10.1016/j.nonrwa.2020.103139.  Google Scholar

[17]

C. Quiñinao and J. D. Touboul, Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model, SIAM J. Appl. Dyn. Syst., 19 (2020), 788-827.  doi: 10.1137/19M1283884.  Google Scholar

[18]

H. Serrano-Guerrero et al., Chaotic synchronization in star coupled networks of three-dimensional cellular neural networks and its applications in communications, International J. Nonlinear Science and Numerical Simulation, 11 (2010), 571-580.   Google Scholar

[19]

L. Skrzypek and Y. You, Dynamics and synchronization of boundary coupled FitzHugh-Nagumo neural networks, Appl. Math. Comput., 388 (2021), 125545, 13 pp. doi: 10.1016/j.amc.2020.125545.  Google Scholar

[20]

A. Slavova, Applications of some mathematical methods in the analysis of cellular neural networks, J. Comput. Appl. Math., 114 (2000), 387-404.  doi: 10.1016/S0377-0427(99)00277-0.  Google Scholar

[21]

A. Slavova, Cellular Neural Networks: Dynamics and Modeling, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0261-4.  Google Scholar

[22]

X. F. Wang, Complex networks, topology, dynamics and synchronization, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 885-916.  doi: 10.1142/S0218127402004802.  Google Scholar

[23]

D. Q. WeiX. S. Luo and Y. L. Zou, Firing activity of complex space-clamped FitzHugh-Nagumo neural networks, European Physical Journal B, 63 (2008), 279-282.  doi: 10.1140/epjb/e2008-00227-5.  Google Scholar

[24]

Z. Yong et al., The synchronization of FitzHugh-Nagumo neuron network coupled by gap junction, Chinese Physics B, 17 (2008), 2297-2303.   Google Scholar

show all references

References:
[1]

B. Ambrosio and M. A. Aziz-Alaoui, Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type, ESAIM: Proceedings, 39 (2013), 15-24.  doi: 10.1051/proc/201339003.  Google Scholar

[2]

A. ArenasA. Diaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153.  doi: 10.1016/j.physrep.2008.09.002.  Google Scholar

[3]

A. Cattani, FitzHugh-Nagumo equations with generalized diffusive coupling, Math. Biosci. Eng., 11 (2014), 203-215.  doi: 10.3934/mbe.2014.11.203.  Google Scholar

[4]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part I, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 746-751.  doi: 10.1109/81.473583.  Google Scholar

[5]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems - Part II, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 752-756.   Google Scholar

[6]

L. O. ChuaM. HaslerG. S. Moschytz and J. Neirynck, Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 559-577.  doi: 10.1109/81.473564.  Google Scholar

[7] L. O. Chua and T. Roska, Cellular Neural Networks and Visual Computing, Cambridge University Press, Cambridge, UK, 2002.  doi: 10.1017/CBO9780511754494.  Google Scholar
[8]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits and Systems, 35 (1988), 1257-1272.  doi: 10.1109/31.7600.  Google Scholar

[9]

L. O. Chua and L. Yang, Cellular neural networks: Application, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.  Google Scholar

[10]

S. M. Dickson, Stochastic Neural Network Dynamics: Synchronization and Control, Ph. D. Dissertation, Loughborough University, UK, 2014. Google Scholar

[11]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[12]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences, 81 (1984), 3088-3092.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[13]

M. M. Ibrahim and I. H. Jung, Complex synchronization of a ring-structured network of FitzHugh-Nagumo neurons with single and dual state gap junctions under ionic gates and external electrical disturbance, IEEE Access, 7 (2019), 57894-57906.  doi: 10.1109/ACCESS.2019.2913872.  Google Scholar

[14]

S. IndoliaA. K. GoswamiS. P. Mishra and P. Asopa, Conceptual understanding of convolutional neural networks - a deep learning approach, Procedia Computer Science, 132 (2018), 679-688.  doi: 10.1016/j.procs.2018.05.069.  Google Scholar

[15]

C. Phan, L. Skrzypek and Y. You, Dynamics and synchronization of complex neural networks with boundary coupling, preprint, arXiv: 2004.09988, 2020. Google Scholar

[16]

C. Phan and Y. You, Synchronization of boundary coupled Hindmarsh-Rose neuron network, Nonlinear Anal. Real World Appl., 55 (2020), 103139, 13pp. doi: 10.1016/j.nonrwa.2020.103139.  Google Scholar

[17]

C. Quiñinao and J. D. Touboul, Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model, SIAM J. Appl. Dyn. Syst., 19 (2020), 788-827.  doi: 10.1137/19M1283884.  Google Scholar

[18]

H. Serrano-Guerrero et al., Chaotic synchronization in star coupled networks of three-dimensional cellular neural networks and its applications in communications, International J. Nonlinear Science and Numerical Simulation, 11 (2010), 571-580.   Google Scholar

[19]

L. Skrzypek and Y. You, Dynamics and synchronization of boundary coupled FitzHugh-Nagumo neural networks, Appl. Math. Comput., 388 (2021), 125545, 13 pp. doi: 10.1016/j.amc.2020.125545.  Google Scholar

[20]

A. Slavova, Applications of some mathematical methods in the analysis of cellular neural networks, J. Comput. Appl. Math., 114 (2000), 387-404.  doi: 10.1016/S0377-0427(99)00277-0.  Google Scholar

[21]

A. Slavova, Cellular Neural Networks: Dynamics and Modeling, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0261-4.  Google Scholar

[22]

X. F. Wang, Complex networks, topology, dynamics and synchronization, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 885-916.  doi: 10.1142/S0218127402004802.  Google Scholar

[23]

D. Q. WeiX. S. Luo and Y. L. Zou, Firing activity of complex space-clamped FitzHugh-Nagumo neural networks, European Physical Journal B, 63 (2008), 279-282.  doi: 10.1140/epjb/e2008-00227-5.  Google Scholar

[24]

Z. Yong et al., The synchronization of FitzHugh-Nagumo neuron network coupled by gap junction, Chinese Physics B, 17 (2008), 2297-2303.   Google Scholar

[1]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[2]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[3]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[4]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[5]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[9]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[12]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[13]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[16]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[17]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[20]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

2019 Impact Factor: 1.27

Article outline

[Back to Top]