• Previous Article
    Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights
  • DCDS-B Home
  • This Issue
  • Next Article
    Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system
doi: 10.3934/dcdsb.2021002
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces

College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450002, China

* Corresponding author: Xing Wu

Received  August 2020 Revised  November 2020 Early access December 2020

Fund Project: This work is partially supported by NSF of China (No.11801090)

In this paper, we study the qualitative behavior of hyperbolic system arising from chemotaxis models. Firstly, by establishing a new product estimates in multi-dimensional Besov space $ \dot{B}_{2, r}^{\frac d2}(\mathbb{R}^d)(1\leq r\leq \infty) $, we establish the global small solutions in multi-dimensional Besov space $ \dot{B}_{2, r}^{\frac d2-1}(\mathbb{R}^d) $ by the method of energy estimates. Then we study the asymptotic behavior and obtain the optimal decay rate of the global solutions if the initial data are small in $ B_{2, 1}^{\frac{d}{2}-1}(\mathbb{R}^d)\cap \dot{B}_{1, \infty}^0(\mathbb{R}^d) $.

Citation: Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021002
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

P. BilerG. Karch and J. Zienkiewicz, Large global-in-time solutions to a nonlocal model of chemotaxis, Adv. Math., 330 (2018), 834-875.  doi: 10.1016/j.aim.2018.03.036.  Google Scholar

[3]

J. Fan and K. Zhao, Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687-695.  doi: 10.1016/j.jmaa.2012.05.036.  Google Scholar

[4]

M. A. FontelosA. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.  doi: 10.1137/S0036141001385046.  Google Scholar

[5]

J. GuoJ. XiaoH. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B (Engl. Ed.), 29 (2009), 629-641.  doi: 10.1016/S0252-9602(09)60059-X.  Google Scholar

[6]

C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825-834.  doi: 10.1007/s00033-012-0193-0.  Google Scholar

[7]

D. Hortsmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein, 105 (2003), 103-165.   Google Scholar

[8]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

E. F. Keller and L. A. Segel, A model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[10]

J. LiT. Li and Z.-A. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.  doi: 10.1142/S0218202514500389.  Google Scholar

[11]

D. LiT. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.  doi: 10.1142/S0218202511005519.  Google Scholar

[12]

D. LiR. Pan and K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[13]

D. Li and J. Rodrigo, Finite-time singularities of an aggregation equation in $\mathbb{R}^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703.  doi: 10.1007/s00220-008-0669-0.  Google Scholar

[14]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009/10), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[15]

T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.  doi: 10.1142/S0218202510004830.  Google Scholar

[16]

T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differ. Equ., 250 (2011), 1310-1333.  doi: 10.1016/j.jde.2010.09.020.  Google Scholar

[17]

H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differ. Equ., 258 (2015), 302-338.  doi: 10.1016/j.jde.2014.09.014.  Google Scholar

[18]

V. R. MartinezZ. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[19]

M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differ. Equ., 257 (2014), 3850-3867.  doi: 10.1016/j.jde.2014.07.011.  Google Scholar

[20]

Y. TaoL. Wang and Z.-A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Continuous Dynam. Systems - B, 18 (2013), 821-845.  doi: 10.3934/dcdsb.2013.18.821.  Google Scholar

[21]

Z.-A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equ., 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[22]

Y. ZhangZ. Tan and M. B. Sun, Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Anal. Real World Appl., 14 (2013), 465-482.  doi: 10.1016/j.nonrwa.2012.07.009.  Google Scholar

[23]

M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

P. BilerG. Karch and J. Zienkiewicz, Large global-in-time solutions to a nonlocal model of chemotaxis, Adv. Math., 330 (2018), 834-875.  doi: 10.1016/j.aim.2018.03.036.  Google Scholar

[3]

J. Fan and K. Zhao, Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687-695.  doi: 10.1016/j.jmaa.2012.05.036.  Google Scholar

[4]

M. A. FontelosA. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.  doi: 10.1137/S0036141001385046.  Google Scholar

[5]

J. GuoJ. XiaoH. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B (Engl. Ed.), 29 (2009), 629-641.  doi: 10.1016/S0252-9602(09)60059-X.  Google Scholar

[6]

C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825-834.  doi: 10.1007/s00033-012-0193-0.  Google Scholar

[7]

D. Hortsmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein, 105 (2003), 103-165.   Google Scholar

[8]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

E. F. Keller and L. A. Segel, A model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[10]

J. LiT. Li and Z.-A. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.  doi: 10.1142/S0218202514500389.  Google Scholar

[11]

D. LiT. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.  doi: 10.1142/S0218202511005519.  Google Scholar

[12]

D. LiR. Pan and K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[13]

D. Li and J. Rodrigo, Finite-time singularities of an aggregation equation in $\mathbb{R}^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703.  doi: 10.1007/s00220-008-0669-0.  Google Scholar

[14]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009/10), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[15]

T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.  doi: 10.1142/S0218202510004830.  Google Scholar

[16]

T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differ. Equ., 250 (2011), 1310-1333.  doi: 10.1016/j.jde.2010.09.020.  Google Scholar

[17]

H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differ. Equ., 258 (2015), 302-338.  doi: 10.1016/j.jde.2014.09.014.  Google Scholar

[18]

V. R. MartinezZ. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[19]

M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differ. Equ., 257 (2014), 3850-3867.  doi: 10.1016/j.jde.2014.07.011.  Google Scholar

[20]

Y. TaoL. Wang and Z.-A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Continuous Dynam. Systems - B, 18 (2013), 821-845.  doi: 10.3934/dcdsb.2013.18.821.  Google Scholar

[21]

Z.-A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equ., 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[22]

Y. ZhangZ. Tan and M. B. Sun, Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Anal. Real World Appl., 14 (2013), 465-482.  doi: 10.1016/j.nonrwa.2012.07.009.  Google Scholar

[23]

M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

[1]

Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations & Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064

[2]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[3]

Shuai Liu, Yuzhu Wang. Optimal time-decay rate of global classical solutions to the generalized compressible Oldroyd-B model. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021041

[4]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5141-5164. doi: 10.3934/dcds.2021071

[5]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[6]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[7]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[8]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[9]

Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145

[10]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[11]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[12]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[13]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[14]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[15]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[16]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[17]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[18]

Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627

[19]

Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049

[20]

Yulan Wang, Xinru Cao. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3235-3254. doi: 10.3934/dcdsb.2015.20.3235

2020 Impact Factor: 1.327

Article outline

[Back to Top]