doi: 10.3934/dcdsb.2021003

Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion

260 Dwight St, New Haven, CT 06511, USA

Received  August 2020 Revised  September 2020 Published  December 2020

The Swift-Hohenberg equation is ubiquitous in the study of bistable dynamics. In this paper, we study the dynamic transitions of the Swift-Hohenberg equation with a third-order dispersion term in one spacial dimension with a periodic boundary condition. As a control parameter crosses a critical value, the trivial stable equilibrium solution will lose its stability, and undergoes a dynamic transition to a new physical state, described by a local attractor. The main result of this paper is to fully characterize the type and detailed structure of the transition using dynamic transition theory [7]. In particular, employing techniques from center manifold theory, we reduce this infinite dimensional problem to a finite one since the space on which the exchange of stability occurs is finite dimensional. The problem then reduces to analysis of single or double Hopf bifurcations, and we completely classify the possible phase changes depending on the dispersion for every spacial period.

Citation: Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021003
References:
[1]

J. Han and C.-H. Hsia, Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition, Discrete Contin. Dyn. Syst. Ser. B, 7 (2012), 2431-2449.  doi: 10.3934/dcdsb.2012.17.2431.  Google Scholar

[2]

A. Hariz, L. Bahloul, L. Cherbi, K. Panajotov, M. Clerc, M. A. Ferré, B. Kostet, E. Averlant and M. Tlidi, Swift-Hohenberg equation with third-order dispersion for optical fiber resonators, Phys. Rev. A, 100 (2019), 023816. doi: 10.1103/PhysRevA.100.023816.  Google Scholar

[3]

T. Hoang and H. J. Hwang, Dynamic pattern formation in Swift-Hohenberg equations, Quart. Appl. Math., 69 (2011), 603-612.  doi: 10.1090/S0033-569X-2011-01260-1.  Google Scholar

[4]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[5]

T. Ma and S. Wang, Bifurcation and stability of superconductivity, J. Math. Phys., 46 (2005), 095112, 31 pp. doi: 10.1063/1.2012128.  Google Scholar

[6]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, Singapore, 2005. doi: 10.1142/5798.  Google Scholar

[7]

T. Ma and S. Wang, Phase Transition Dynamics, Springer Nature Switzerland AG, 2013. Google Scholar

[8]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

show all references

References:
[1]

J. Han and C.-H. Hsia, Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition, Discrete Contin. Dyn. Syst. Ser. B, 7 (2012), 2431-2449.  doi: 10.3934/dcdsb.2012.17.2431.  Google Scholar

[2]

A. Hariz, L. Bahloul, L. Cherbi, K. Panajotov, M. Clerc, M. A. Ferré, B. Kostet, E. Averlant and M. Tlidi, Swift-Hohenberg equation with third-order dispersion for optical fiber resonators, Phys. Rev. A, 100 (2019), 023816. doi: 10.1103/PhysRevA.100.023816.  Google Scholar

[3]

T. Hoang and H. J. Hwang, Dynamic pattern formation in Swift-Hohenberg equations, Quart. Appl. Math., 69 (2011), 603-612.  doi: 10.1090/S0033-569X-2011-01260-1.  Google Scholar

[4]

C. KieuT. SengulQ. Wang and D. Yan, On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents, Commun. Nonlinear Sci. Numer. Simul., 65 (2018), 196-215.  doi: 10.1016/j.cnsns.2018.05.010.  Google Scholar

[5]

T. Ma and S. Wang, Bifurcation and stability of superconductivity, J. Math. Phys., 46 (2005), 095112, 31 pp. doi: 10.1063/1.2012128.  Google Scholar

[6]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, Singapore, 2005. doi: 10.1142/5798.  Google Scholar

[7]

T. Ma and S. Wang, Phase Transition Dynamics, Springer Nature Switzerland AG, 2013. Google Scholar

[8]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

Figure 1.  These vector fields show the general shape of the case ${\mathop{\rm Re}\nolimits} C > 0 $ and ${\mathop{\rm Re}\nolimits} D < 0 $. The vertical axis represents $ \rho_2 $ and the horizontal represents $ \rho_1 $. The darker line is given by $ \rho_2 = m_1 \rho_1 $ and the lighter line is given by $ \rho_2 = m_2 \rho_1 $
Figure 2.  Plot of ${\mathop{\rm Re}\nolimits} \beta_n(0) $ for various $ \ell $. One can see from the figure that for large $ \ell $, the maximas over $ n \in \mathbb{Z} $ are attained at one or two pairs of conjugate eigenvalues. For sufficiently small $ \ell $, $ \beta_0(0) $ will be the maximum eigenvalue
Figure 3.  A visual of the partition. $ \mathcal I_1 $, $ \mathcal I_2 $, $ \mathcal I_3 $, and $ \mathcal I_4 $ are encoded by the different shades
Figure 4.  Phase diagram for $ k = 2 $
Figure 5.  Phase diagram for $ k = 6 $
Figure 6.  The phase diagram at $ \ell = 2\pi $
Figure 7.  Forward in time trajectories (left) tending towards the stable periodic orbit, and backward in time trajectories (right) tending towards the unstable periodic orbit
Figure 8.  The blue line is the numerical approximations of the radius of the limit cycles as a function of $ \lambda $, and the lighter line is the analytical limiting behavior as $ \lambda \to 0 $
[1]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[2]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[4]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[5]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[6]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[7]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[9]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[10]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[11]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[12]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[13]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[14]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[15]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[16]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[17]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[20]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]