doi: 10.3934/dcdsb.2021004

On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease

1. 

NLAAML, Abou-Bekr Belkaid University, Tlemcen 13000, Algeria

2. 

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, 76600 Le Havre, France

3. 

LMPA, Abdelhamid Ibn-Badis University, Mostaganem 27000, Algeria

* Corresponding author: Nabahats Dib-Baghdadli

Received  August 2020 Revised  October 2020 Early access  December 2020

In this work, we study some reaction-diffusion equations set in two habitats which model the spatial dispersal of the triatomines, vectors of Chagas disease. We prove in particular that the dispersal operator generates an analytic semigroup in an adequate space and we prove the local existence of the solution for the corresponding Cauchy problem.

Citation: Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021004
References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Skew Brownian motion: A model for diffusion with interfaces, Proc. Int. Conf. Math. Model. Med. Heal. Sci., (1998), 73-78. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

M. CowlingI. DoustA. McIntosh and A. Yagi, Banach space operator with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[5]

B. CrawfordC. M. Kribs-Zaleta and G. Ambartsoumian, Invasion speed in cellular automaton models for T.cruzi Vector MIGration, Bull. Math. Biol., 75 (2013), 1051-1081.  doi: 10.1007/s11538-013-9840-7.  Google Scholar

[6]

H. DevillersJ. R. Lobry and F. Menu, An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations, J. Theor. Biol., 255 (2008), 307-315.  doi: 10.1016/j.jtbi.2008.08.023.  Google Scholar

[7]

G. DoreA. FaviniR. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.  doi: 10.1016/j.jfa.2011.05.021.  Google Scholar

[8]

G. Dore and S. Yakubov, Semigroup estimates and noncoercive boundary value problems, Semigroup Forum, 60 (2000), 93-121.   Google Scholar

[9]

N. El Saadi, A. Bah, T. Mahdjoub and C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: A view from an agent-based model, Ecol. Modell., 423 (2020), 109001. Google Scholar

[10]

A. Favini, R. Labbas, S. Maingot and A. Thorel, Elliptic differential operator with an abstract Robin boundary condition containing two spectral parameters, study in a non commutative framework, To appear in 2020. Google Scholar

[11]

A. FaviniR. LabbasA. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448-480.  doi: 10.1016/j.jmaa.2018.10.085.  Google Scholar

[12]

P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat. (6), 5 (1972), 657-729.   Google Scholar

[13]

M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer, 1980. Google Scholar

[15]

C. Kribs-Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi, Math. Popul. Stud., 13 (2006), 135-152.  doi: 10.1080/08898480600788576.  Google Scholar

[16]

C. R. LazzariM. H. Pereira and M. G. Lorenzo, Behavioural biology of Chagas disease vectors, Mem. Inst. Oswaldo Cruz., 108 (2013), 34-47.   Google Scholar

[17]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.  Google Scholar

[18]

T. Mahdjoub and C. Kribs, Assessing the invasion speed of triatomine populations, Chagas disease vectors, Rev. Mat. Teor. Apl., 27 (2020), 73-92.   Google Scholar

[19]

F. Menu, M. Ginoux, E. Rajon, C. R. Lazzari and J. E. Rabinovich, Adaptive developmental delay in chagas disease vectors: An evolutionary ecology approach, PLoS Negl. Trop. Dis., 4 (2010). Google Scholar

[20]

M. MeskT. MahdjoubS. GourbièreJ. E. Rabinovich and F. Menu, Invasion speeds of Triatoma dimidiata, vector of Chagas disease: An application of orthogonal polynomials method, J. Theor. Biol., 395 (2016), 126-143.  doi: 10.1016/j.jtbi.2016.01.017.  Google Scholar

[21]

P. Nouvellet, Z. M. Cucunubá and S. Gourbière, Chapter four - Ecology, evolution and control of chagas disease: A century of neglected modelling and a promising future, in Adv. Parasitol. (eds. M. A. Roy and B. Maria Gloria), Academic Press, (2015), 135-191. Google Scholar

[22]

V. PayetM. J. Ramirez-SierraJ. RabinovichF. Menu and E. Dumonteil, Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico, Vector-Borne, Zoonotic Dis., 9 (2009), 243-251.   Google Scholar

[23]

R. SlimiS. El YacoubiE. Dumonteil and S. Gourbière, A cellular automata model for Chagas disease, Appl. Math. Model., 33 (2009), 1072-1085.  doi: 10.1016/j.apm.2007.12.028.  Google Scholar

[24]

V. Steindorf and N. A. Maidana, Modeling the spatial spread of Chagas disease, Bull. Math. Biol., 81 (2019), 1687-1730.  doi: 10.1007/s11538-019-00581-5.  Google Scholar

show all references

References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Skew Brownian motion: A model for diffusion with interfaces, Proc. Int. Conf. Math. Model. Med. Heal. Sci., (1998), 73-78. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

M. CowlingI. DoustA. McIntosh and A. Yagi, Banach space operator with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[5]

B. CrawfordC. M. Kribs-Zaleta and G. Ambartsoumian, Invasion speed in cellular automaton models for T.cruzi Vector MIGration, Bull. Math. Biol., 75 (2013), 1051-1081.  doi: 10.1007/s11538-013-9840-7.  Google Scholar

[6]

H. DevillersJ. R. Lobry and F. Menu, An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations, J. Theor. Biol., 255 (2008), 307-315.  doi: 10.1016/j.jtbi.2008.08.023.  Google Scholar

[7]

G. DoreA. FaviniR. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.  doi: 10.1016/j.jfa.2011.05.021.  Google Scholar

[8]

G. Dore and S. Yakubov, Semigroup estimates and noncoercive boundary value problems, Semigroup Forum, 60 (2000), 93-121.   Google Scholar

[9]

N. El Saadi, A. Bah, T. Mahdjoub and C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: A view from an agent-based model, Ecol. Modell., 423 (2020), 109001. Google Scholar

[10]

A. Favini, R. Labbas, S. Maingot and A. Thorel, Elliptic differential operator with an abstract Robin boundary condition containing two spectral parameters, study in a non commutative framework, To appear in 2020. Google Scholar

[11]

A. FaviniR. LabbasA. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448-480.  doi: 10.1016/j.jmaa.2018.10.085.  Google Scholar

[12]

P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat. (6), 5 (1972), 657-729.   Google Scholar

[13]

M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer, 1980. Google Scholar

[15]

C. Kribs-Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi, Math. Popul. Stud., 13 (2006), 135-152.  doi: 10.1080/08898480600788576.  Google Scholar

[16]

C. R. LazzariM. H. Pereira and M. G. Lorenzo, Behavioural biology of Chagas disease vectors, Mem. Inst. Oswaldo Cruz., 108 (2013), 34-47.   Google Scholar

[17]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.  Google Scholar

[18]

T. Mahdjoub and C. Kribs, Assessing the invasion speed of triatomine populations, Chagas disease vectors, Rev. Mat. Teor. Apl., 27 (2020), 73-92.   Google Scholar

[19]

F. Menu, M. Ginoux, E. Rajon, C. R. Lazzari and J. E. Rabinovich, Adaptive developmental delay in chagas disease vectors: An evolutionary ecology approach, PLoS Negl. Trop. Dis., 4 (2010). Google Scholar

[20]

M. MeskT. MahdjoubS. GourbièreJ. E. Rabinovich and F. Menu, Invasion speeds of Triatoma dimidiata, vector of Chagas disease: An application of orthogonal polynomials method, J. Theor. Biol., 395 (2016), 126-143.  doi: 10.1016/j.jtbi.2016.01.017.  Google Scholar

[21]

P. Nouvellet, Z. M. Cucunubá and S. Gourbière, Chapter four - Ecology, evolution and control of chagas disease: A century of neglected modelling and a promising future, in Adv. Parasitol. (eds. M. A. Roy and B. Maria Gloria), Academic Press, (2015), 135-191. Google Scholar

[22]

V. PayetM. J. Ramirez-SierraJ. RabinovichF. Menu and E. Dumonteil, Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico, Vector-Borne, Zoonotic Dis., 9 (2009), 243-251.   Google Scholar

[23]

R. SlimiS. El YacoubiE. Dumonteil and S. Gourbière, A cellular automata model for Chagas disease, Appl. Math. Model., 33 (2009), 1072-1085.  doi: 10.1016/j.apm.2007.12.028.  Google Scholar

[24]

V. Steindorf and N. A. Maidana, Modeling the spatial spread of Chagas disease, Bull. Math. Biol., 81 (2019), 1687-1730.  doi: 10.1007/s11538-019-00581-5.  Google Scholar

Figure 1.  Population density in two habitats
Figure 2.  A schematic representation of the life cycle used in the triatomine's model
Table 1.  The demographic and diffusion parameters of T.Dimidiata population
Parameter Definition Properties
$ s_{j}(t) $ Probability of survival of juveniles per unit of time $ 0\leq s_{j}(t)\leq 1 $
$ s_{a}(t) $ Probability of survival of adult per unit of time $ 0\leq s_{a}(t)\leq 1 $
$ w_{j}(t) $ Probability of transition from juvenile to adult $ 0\leq w_{j}(t)\leq 1 $
$ f_{a}(t) $ Female fertility per unit time $ f_{a}(t)\geq 0 $
$ d_{j-},d_{j+} $ diffusion coefficient of juveniles $ d_{j-},d_{j+}> 0 $
$ d_{a-},d_{a+} $ diffusion coefficient of adults $ d_{a-},d_{a+}> 0 $
Parameter Definition Properties
$ s_{j}(t) $ Probability of survival of juveniles per unit of time $ 0\leq s_{j}(t)\leq 1 $
$ s_{a}(t) $ Probability of survival of adult per unit of time $ 0\leq s_{a}(t)\leq 1 $
$ w_{j}(t) $ Probability of transition from juvenile to adult $ 0\leq w_{j}(t)\leq 1 $
$ f_{a}(t) $ Female fertility per unit time $ f_{a}(t)\geq 0 $
$ d_{j-},d_{j+} $ diffusion coefficient of juveniles $ d_{j-},d_{j+}> 0 $
$ d_{a-},d_{a+} $ diffusion coefficient of adults $ d_{a-},d_{a+}> 0 $
[1]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[2]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[3]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[4]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[5]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[6]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020087

[7]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[8]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[9]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[10]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[11]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[12]

Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda. Reduced model from a reaction-diffusion system of collective motion of camphor boats. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 847-856. doi: 10.3934/dcdss.2015.8.847

[13]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[14]

María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255

[15]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[16]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[17]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

[18]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[19]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[20]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (104)
  • HTML views (266)
  • Cited by (0)

[Back to Top]