doi: 10.3934/dcdsb.2021004

On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease

1. 

NLAAML, Abou-Bekr Belkaid University, Tlemcen 13000, Algeria

2. 

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, 76600 Le Havre, France

3. 

LMPA, Abdelhamid Ibn-Badis University, Mostaganem 27000, Algeria

* Corresponding author: Nabahats Dib-Baghdadli

Received  August 2020 Revised  October 2020 Published  December 2020

In this work, we study some reaction-diffusion equations set in two habitats which model the spatial dispersal of the triatomines, vectors of Chagas disease. We prove in particular that the dispersal operator generates an analytic semigroup in an adequate space and we prove the local existence of the solution for the corresponding Cauchy problem.

Citation: Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021004
References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Skew Brownian motion: A model for diffusion with interfaces, Proc. Int. Conf. Math. Model. Med. Heal. Sci., (1998), 73-78. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

M. CowlingI. DoustA. McIntosh and A. Yagi, Banach space operator with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[5]

B. CrawfordC. M. Kribs-Zaleta and G. Ambartsoumian, Invasion speed in cellular automaton models for T.cruzi Vector MIGration, Bull. Math. Biol., 75 (2013), 1051-1081.  doi: 10.1007/s11538-013-9840-7.  Google Scholar

[6]

H. DevillersJ. R. Lobry and F. Menu, An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations, J. Theor. Biol., 255 (2008), 307-315.  doi: 10.1016/j.jtbi.2008.08.023.  Google Scholar

[7]

G. DoreA. FaviniR. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.  doi: 10.1016/j.jfa.2011.05.021.  Google Scholar

[8]

G. Dore and S. Yakubov, Semigroup estimates and noncoercive boundary value problems, Semigroup Forum, 60 (2000), 93-121.   Google Scholar

[9]

N. El Saadi, A. Bah, T. Mahdjoub and C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: A view from an agent-based model, Ecol. Modell., 423 (2020), 109001. Google Scholar

[10]

A. Favini, R. Labbas, S. Maingot and A. Thorel, Elliptic differential operator with an abstract Robin boundary condition containing two spectral parameters, study in a non commutative framework, To appear in 2020. Google Scholar

[11]

A. FaviniR. LabbasA. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448-480.  doi: 10.1016/j.jmaa.2018.10.085.  Google Scholar

[12]

P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat. (6), 5 (1972), 657-729.   Google Scholar

[13]

M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer, 1980. Google Scholar

[15]

C. Kribs-Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi, Math. Popul. Stud., 13 (2006), 135-152.  doi: 10.1080/08898480600788576.  Google Scholar

[16]

C. R. LazzariM. H. Pereira and M. G. Lorenzo, Behavioural biology of Chagas disease vectors, Mem. Inst. Oswaldo Cruz., 108 (2013), 34-47.   Google Scholar

[17]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.  Google Scholar

[18]

T. Mahdjoub and C. Kribs, Assessing the invasion speed of triatomine populations, Chagas disease vectors, Rev. Mat. Teor. Apl., 27 (2020), 73-92.   Google Scholar

[19]

F. Menu, M. Ginoux, E. Rajon, C. R. Lazzari and J. E. Rabinovich, Adaptive developmental delay in chagas disease vectors: An evolutionary ecology approach, PLoS Negl. Trop. Dis., 4 (2010). Google Scholar

[20]

M. MeskT. MahdjoubS. GourbièreJ. E. Rabinovich and F. Menu, Invasion speeds of Triatoma dimidiata, vector of Chagas disease: An application of orthogonal polynomials method, J. Theor. Biol., 395 (2016), 126-143.  doi: 10.1016/j.jtbi.2016.01.017.  Google Scholar

[21]

P. Nouvellet, Z. M. Cucunubá and S. Gourbière, Chapter four - Ecology, evolution and control of chagas disease: A century of neglected modelling and a promising future, in Adv. Parasitol. (eds. M. A. Roy and B. Maria Gloria), Academic Press, (2015), 135-191. Google Scholar

[22]

V. PayetM. J. Ramirez-SierraJ. RabinovichF. Menu and E. Dumonteil, Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico, Vector-Borne, Zoonotic Dis., 9 (2009), 243-251.   Google Scholar

[23]

R. SlimiS. El YacoubiE. Dumonteil and S. Gourbière, A cellular automata model for Chagas disease, Appl. Math. Model., 33 (2009), 1072-1085.  doi: 10.1016/j.apm.2007.12.028.  Google Scholar

[24]

V. Steindorf and N. A. Maidana, Modeling the spatial spread of Chagas disease, Bull. Math. Biol., 81 (2019), 1687-1730.  doi: 10.1007/s11538-019-00581-5.  Google Scholar

show all references

References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Skew Brownian motion: A model for diffusion with interfaces, Proc. Int. Conf. Math. Model. Med. Heal. Sci., (1998), 73-78. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

M. CowlingI. DoustA. McIntosh and A. Yagi, Banach space operator with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[5]

B. CrawfordC. M. Kribs-Zaleta and G. Ambartsoumian, Invasion speed in cellular automaton models for T.cruzi Vector MIGration, Bull. Math. Biol., 75 (2013), 1051-1081.  doi: 10.1007/s11538-013-9840-7.  Google Scholar

[6]

H. DevillersJ. R. Lobry and F. Menu, An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations, J. Theor. Biol., 255 (2008), 307-315.  doi: 10.1016/j.jtbi.2008.08.023.  Google Scholar

[7]

G. DoreA. FaviniR. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.  doi: 10.1016/j.jfa.2011.05.021.  Google Scholar

[8]

G. Dore and S. Yakubov, Semigroup estimates and noncoercive boundary value problems, Semigroup Forum, 60 (2000), 93-121.   Google Scholar

[9]

N. El Saadi, A. Bah, T. Mahdjoub and C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: A view from an agent-based model, Ecol. Modell., 423 (2020), 109001. Google Scholar

[10]

A. Favini, R. Labbas, S. Maingot and A. Thorel, Elliptic differential operator with an abstract Robin boundary condition containing two spectral parameters, study in a non commutative framework, To appear in 2020. Google Scholar

[11]

A. FaviniR. LabbasA. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448-480.  doi: 10.1016/j.jmaa.2018.10.085.  Google Scholar

[12]

P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat. (6), 5 (1972), 657-729.   Google Scholar

[13]

M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer, 1980. Google Scholar

[15]

C. Kribs-Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi, Math. Popul. Stud., 13 (2006), 135-152.  doi: 10.1080/08898480600788576.  Google Scholar

[16]

C. R. LazzariM. H. Pereira and M. G. Lorenzo, Behavioural biology of Chagas disease vectors, Mem. Inst. Oswaldo Cruz., 108 (2013), 34-47.   Google Scholar

[17]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.  Google Scholar

[18]

T. Mahdjoub and C. Kribs, Assessing the invasion speed of triatomine populations, Chagas disease vectors, Rev. Mat. Teor. Apl., 27 (2020), 73-92.   Google Scholar

[19]

F. Menu, M. Ginoux, E. Rajon, C. R. Lazzari and J. E. Rabinovich, Adaptive developmental delay in chagas disease vectors: An evolutionary ecology approach, PLoS Negl. Trop. Dis., 4 (2010). Google Scholar

[20]

M. MeskT. MahdjoubS. GourbièreJ. E. Rabinovich and F. Menu, Invasion speeds of Triatoma dimidiata, vector of Chagas disease: An application of orthogonal polynomials method, J. Theor. Biol., 395 (2016), 126-143.  doi: 10.1016/j.jtbi.2016.01.017.  Google Scholar

[21]

P. Nouvellet, Z. M. Cucunubá and S. Gourbière, Chapter four - Ecology, evolution and control of chagas disease: A century of neglected modelling and a promising future, in Adv. Parasitol. (eds. M. A. Roy and B. Maria Gloria), Academic Press, (2015), 135-191. Google Scholar

[22]

V. PayetM. J. Ramirez-SierraJ. RabinovichF. Menu and E. Dumonteil, Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico, Vector-Borne, Zoonotic Dis., 9 (2009), 243-251.   Google Scholar

[23]

R. SlimiS. El YacoubiE. Dumonteil and S. Gourbière, A cellular automata model for Chagas disease, Appl. Math. Model., 33 (2009), 1072-1085.  doi: 10.1016/j.apm.2007.12.028.  Google Scholar

[24]

V. Steindorf and N. A. Maidana, Modeling the spatial spread of Chagas disease, Bull. Math. Biol., 81 (2019), 1687-1730.  doi: 10.1007/s11538-019-00581-5.  Google Scholar

Figure 1.  Population density in two habitats
Figure 2.  A schematic representation of the life cycle used in the triatomine's model
Table 1.  The demographic and diffusion parameters of T.Dimidiata population
Parameter Definition Properties
$ s_{j}(t) $ Probability of survival of juveniles per unit of time $ 0\leq s_{j}(t)\leq 1 $
$ s_{a}(t) $ Probability of survival of adult per unit of time $ 0\leq s_{a}(t)\leq 1 $
$ w_{j}(t) $ Probability of transition from juvenile to adult $ 0\leq w_{j}(t)\leq 1 $
$ f_{a}(t) $ Female fertility per unit time $ f_{a}(t)\geq 0 $
$ d_{j-},d_{j+} $ diffusion coefficient of juveniles $ d_{j-},d_{j+}> 0 $
$ d_{a-},d_{a+} $ diffusion coefficient of adults $ d_{a-},d_{a+}> 0 $
Parameter Definition Properties
$ s_{j}(t) $ Probability of survival of juveniles per unit of time $ 0\leq s_{j}(t)\leq 1 $
$ s_{a}(t) $ Probability of survival of adult per unit of time $ 0\leq s_{a}(t)\leq 1 $
$ w_{j}(t) $ Probability of transition from juvenile to adult $ 0\leq w_{j}(t)\leq 1 $
$ f_{a}(t) $ Female fertility per unit time $ f_{a}(t)\geq 0 $
$ d_{j-},d_{j+} $ diffusion coefficient of juveniles $ d_{j-},d_{j+}> 0 $
$ d_{a-},d_{a+} $ diffusion coefficient of adults $ d_{a-},d_{a+}> 0 $
[1]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[2]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[7]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[8]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[9]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[10]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[11]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[14]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[15]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[16]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[17]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[18]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006

[19]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[20]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (61)
  • HTML views (140)
  • Cited by (0)

[Back to Top]