• Previous Article
    Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks
  • DCDS-B Home
  • This Issue
  • Next Article
    Spatial pattern formation in activator-inhibitor models with nonlocal dispersal
doi: 10.3934/dcdsb.2021004

On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease

1. 

NLAAML, Abou-Bekr Belkaid University, Tlemcen 13000, Algeria

2. 

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, 76600 Le Havre, France

3. 

LMPA, Abdelhamid Ibn-Badis University, Mostaganem 27000, Algeria

* Corresponding author: Nabahats Dib-Baghdadli

Received  August 2020 Revised  October 2020 Published  December 2020

In this work, we study some reaction-diffusion equations set in two habitats which model the spatial dispersal of the triatomines, vectors of Chagas disease. We prove in particular that the dispersal operator generates an analytic semigroup in an adequate space and we prove the local existence of the solution for the corresponding Cauchy problem.

Citation: Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021004
References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Skew Brownian motion: A model for diffusion with interfaces, Proc. Int. Conf. Math. Model. Med. Heal. Sci., (1998), 73-78. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

M. CowlingI. DoustA. McIntosh and A. Yagi, Banach space operator with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[5]

B. CrawfordC. M. Kribs-Zaleta and G. Ambartsoumian, Invasion speed in cellular automaton models for T.cruzi Vector MIGration, Bull. Math. Biol., 75 (2013), 1051-1081.  doi: 10.1007/s11538-013-9840-7.  Google Scholar

[6]

H. DevillersJ. R. Lobry and F. Menu, An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations, J. Theor. Biol., 255 (2008), 307-315.  doi: 10.1016/j.jtbi.2008.08.023.  Google Scholar

[7]

G. DoreA. FaviniR. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.  doi: 10.1016/j.jfa.2011.05.021.  Google Scholar

[8]

G. Dore and S. Yakubov, Semigroup estimates and noncoercive boundary value problems, Semigroup Forum, 60 (2000), 93-121.   Google Scholar

[9]

N. El Saadi, A. Bah, T. Mahdjoub and C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: A view from an agent-based model, Ecol. Modell., 423 (2020), 109001. Google Scholar

[10]

A. Favini, R. Labbas, S. Maingot and A. Thorel, Elliptic differential operator with an abstract Robin boundary condition containing two spectral parameters, study in a non commutative framework, To appear in 2020. Google Scholar

[11]

A. FaviniR. LabbasA. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448-480.  doi: 10.1016/j.jmaa.2018.10.085.  Google Scholar

[12]

P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat. (6), 5 (1972), 657-729.   Google Scholar

[13]

M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer, 1980. Google Scholar

[15]

C. Kribs-Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi, Math. Popul. Stud., 13 (2006), 135-152.  doi: 10.1080/08898480600788576.  Google Scholar

[16]

C. R. LazzariM. H. Pereira and M. G. Lorenzo, Behavioural biology of Chagas disease vectors, Mem. Inst. Oswaldo Cruz., 108 (2013), 34-47.   Google Scholar

[17]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.  Google Scholar

[18]

T. Mahdjoub and C. Kribs, Assessing the invasion speed of triatomine populations, Chagas disease vectors, Rev. Mat. Teor. Apl., 27 (2020), 73-92.   Google Scholar

[19]

F. Menu, M. Ginoux, E. Rajon, C. R. Lazzari and J. E. Rabinovich, Adaptive developmental delay in chagas disease vectors: An evolutionary ecology approach, PLoS Negl. Trop. Dis., 4 (2010). Google Scholar

[20]

M. MeskT. MahdjoubS. GourbièreJ. E. Rabinovich and F. Menu, Invasion speeds of Triatoma dimidiata, vector of Chagas disease: An application of orthogonal polynomials method, J. Theor. Biol., 395 (2016), 126-143.  doi: 10.1016/j.jtbi.2016.01.017.  Google Scholar

[21]

P. Nouvellet, Z. M. Cucunubá and S. Gourbière, Chapter four - Ecology, evolution and control of chagas disease: A century of neglected modelling and a promising future, in Adv. Parasitol. (eds. M. A. Roy and B. Maria Gloria), Academic Press, (2015), 135-191. Google Scholar

[22]

V. PayetM. J. Ramirez-SierraJ. RabinovichF. Menu and E. Dumonteil, Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico, Vector-Borne, Zoonotic Dis., 9 (2009), 243-251.   Google Scholar

[23]

R. SlimiS. El YacoubiE. Dumonteil and S. Gourbière, A cellular automata model for Chagas disease, Appl. Math. Model., 33 (2009), 1072-1085.  doi: 10.1016/j.apm.2007.12.028.  Google Scholar

[24]

V. Steindorf and N. A. Maidana, Modeling the spatial spread of Chagas disease, Bull. Math. Biol., 81 (2019), 1687-1730.  doi: 10.1007/s11538-019-00581-5.  Google Scholar

show all references

References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Skew Brownian motion: A model for diffusion with interfaces, Proc. Int. Conf. Math. Model. Med. Heal. Sci., (1998), 73-78. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

M. CowlingI. DoustA. McIntosh and A. Yagi, Banach space operator with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[5]

B. CrawfordC. M. Kribs-Zaleta and G. Ambartsoumian, Invasion speed in cellular automaton models for T.cruzi Vector MIGration, Bull. Math. Biol., 75 (2013), 1051-1081.  doi: 10.1007/s11538-013-9840-7.  Google Scholar

[6]

H. DevillersJ. R. Lobry and F. Menu, An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations, J. Theor. Biol., 255 (2008), 307-315.  doi: 10.1016/j.jtbi.2008.08.023.  Google Scholar

[7]

G. DoreA. FaviniR. Labbas and K. Lemrabet, An abstract transmission problem in a thin layer, I: Sharp estimates, J. Funct. Anal., 261 (2011), 1865-1922.  doi: 10.1016/j.jfa.2011.05.021.  Google Scholar

[8]

G. Dore and S. Yakubov, Semigroup estimates and noncoercive boundary value problems, Semigroup Forum, 60 (2000), 93-121.   Google Scholar

[9]

N. El Saadi, A. Bah, T. Mahdjoub and C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: A view from an agent-based model, Ecol. Modell., 423 (2020), 109001. Google Scholar

[10]

A. Favini, R. Labbas, S. Maingot and A. Thorel, Elliptic differential operator with an abstract Robin boundary condition containing two spectral parameters, study in a non commutative framework, To appear in 2020. Google Scholar

[11]

A. FaviniR. LabbasA. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448-480.  doi: 10.1016/j.jmaa.2018.10.085.  Google Scholar

[12]

P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat. (6), 5 (1972), 657-729.   Google Scholar

[13]

M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer, 1980. Google Scholar

[15]

C. Kribs-Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi, Math. Popul. Stud., 13 (2006), 135-152.  doi: 10.1080/08898480600788576.  Google Scholar

[16]

C. R. LazzariM. H. Pereira and M. G. Lorenzo, Behavioural biology of Chagas disease vectors, Mem. Inst. Oswaldo Cruz., 108 (2013), 34-47.   Google Scholar

[17]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.  Google Scholar

[18]

T. Mahdjoub and C. Kribs, Assessing the invasion speed of triatomine populations, Chagas disease vectors, Rev. Mat. Teor. Apl., 27 (2020), 73-92.   Google Scholar

[19]

F. Menu, M. Ginoux, E. Rajon, C. R. Lazzari and J. E. Rabinovich, Adaptive developmental delay in chagas disease vectors: An evolutionary ecology approach, PLoS Negl. Trop. Dis., 4 (2010). Google Scholar

[20]

M. MeskT. MahdjoubS. GourbièreJ. E. Rabinovich and F. Menu, Invasion speeds of Triatoma dimidiata, vector of Chagas disease: An application of orthogonal polynomials method, J. Theor. Biol., 395 (2016), 126-143.  doi: 10.1016/j.jtbi.2016.01.017.  Google Scholar

[21]

P. Nouvellet, Z. M. Cucunubá and S. Gourbière, Chapter four - Ecology, evolution and control of chagas disease: A century of neglected modelling and a promising future, in Adv. Parasitol. (eds. M. A. Roy and B. Maria Gloria), Academic Press, (2015), 135-191. Google Scholar

[22]

V. PayetM. J. Ramirez-SierraJ. RabinovichF. Menu and E. Dumonteil, Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico, Vector-Borne, Zoonotic Dis., 9 (2009), 243-251.   Google Scholar

[23]

R. SlimiS. El YacoubiE. Dumonteil and S. Gourbière, A cellular automata model for Chagas disease, Appl. Math. Model., 33 (2009), 1072-1085.  doi: 10.1016/j.apm.2007.12.028.  Google Scholar

[24]

V. Steindorf and N. A. Maidana, Modeling the spatial spread of Chagas disease, Bull. Math. Biol., 81 (2019), 1687-1730.  doi: 10.1007/s11538-019-00581-5.  Google Scholar

Figure 1.  Population density in two habitats
Figure 2.  A schematic representation of the life cycle used in the triatomine's model
Table 1.  The demographic and diffusion parameters of T.Dimidiata population
Parameter Definition Properties
$ s_{j}(t) $ Probability of survival of juveniles per unit of time $ 0\leq s_{j}(t)\leq 1 $
$ s_{a}(t) $ Probability of survival of adult per unit of time $ 0\leq s_{a}(t)\leq 1 $
$ w_{j}(t) $ Probability of transition from juvenile to adult $ 0\leq w_{j}(t)\leq 1 $
$ f_{a}(t) $ Female fertility per unit time $ f_{a}(t)\geq 0 $
$ d_{j-},d_{j+} $ diffusion coefficient of juveniles $ d_{j-},d_{j+}> 0 $
$ d_{a-},d_{a+} $ diffusion coefficient of adults $ d_{a-},d_{a+}> 0 $
Parameter Definition Properties
$ s_{j}(t) $ Probability of survival of juveniles per unit of time $ 0\leq s_{j}(t)\leq 1 $
$ s_{a}(t) $ Probability of survival of adult per unit of time $ 0\leq s_{a}(t)\leq 1 $
$ w_{j}(t) $ Probability of transition from juvenile to adult $ 0\leq w_{j}(t)\leq 1 $
$ f_{a}(t) $ Female fertility per unit time $ f_{a}(t)\geq 0 $
$ d_{j-},d_{j+} $ diffusion coefficient of juveniles $ d_{j-},d_{j+}> 0 $
$ d_{a-},d_{a+} $ diffusion coefficient of adults $ d_{a-},d_{a+}> 0 $
[1]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[2]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[3]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[6]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[7]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[11]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[12]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[16]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[17]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[18]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (23)
  • HTML views (46)
  • Cited by (0)

[Back to Top]