doi: 10.3934/dcdsb.2021005

On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect

School of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

* Corresponding author. G. Shang's current address is Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, China

Dedicated to Professor Sze-Bi Hsu on the occasion of his 70th birthday and retirement

Received  April 2020 Revised  November 2020 Published  December 2020

For a stage-structured population model in periodic discrete habitat, with periodic initial values it reduces to a system of two differential equations with time delay. Assuming the birth rate is of unimodal type, we obtain the influence of time delay on the local and global dynamics. In particular, large delay leads to population vanishing. As delay decreases, we found three critical values of delay for the emergence of different dynamics, by appealing to a combination of monotone dynamical system theory, Hopf bifurcation theory and the fluctuation method. Numerical simulations are also performed to illustrate the results.

Citation: Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021005
References:
[1]

T. AyeJ. Fang and Y. Pan, On a population model in discrete periodic habitat. I. Spreading speed and optimal dispersal strategy}, J. Diff. Eqns., 269 (2020), 9653-9679.  doi: 10.1016/j.jde.2020.06.050.  Google Scholar

[2]

T. Aye, J. Fang and Y. Pan, On a population model in discrete periodic habitat. II. Allee effect and propagation failure, Preprint. Google Scholar

[3]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.  doi: 10.1137/S0036141000376086.  Google Scholar

[4]

S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calc. Var. Partial Differential Equations, 59 (2020), 33, 19 pp. doi: 10.1007/s00526-019-1693-y.  Google Scholar

[5]

J. FangS. A. Gourley and Y. Lou, Stage-structured models of intra- and inter-specific competition within age classes, J. Diff. Eqns., 260 (2016), 1918-1953.  doi: 10.1016/j.jde.2015.09.048.  Google Scholar

[6]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 137â€"200. doi: 10.1090/fic/048/06.  Google Scholar

[7]

W. S. C. GurneyS. P. Blythe and R. M. Bisbet, Bicholson's blowflies revisited, Nature, 287 (1980), 17-21.  doi: 10.1038/287017a0.  Google Scholar

[8]

J. Hale, Theory of Functional Differential Equations, Springer, New York-Hedelberg, 1977. doi: 10.1007/978-1-4612-9892-2.  Google Scholar

[9] B. D. HassardN. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.   Google Scholar
[10]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[11]

A. J. Nicholson, Compensatory reactions of population to stresses, and their evolutionary significance, Aust. J. Zool., 2 (1954), 1-8.  doi: 10.1071/zo9540001.  Google Scholar

[12]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.   Google Scholar

[13]

H. ShuL. Wang and J. Wu, Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations, J. Diff. Eqns., 255 (2013), 2565-2586.  doi: 10.1016/j.jde.2013.06.020.  Google Scholar

[14]

H. ShuL. Wang and J. Wu, Bounded global Hopf branches for stage-structured differential equations with unimodal feedback, Nonlinearity, 30 (2017), 943-964.  doi: 10.1088/1361-6544/aa5497.  Google Scholar

[15]

H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., 1995. doi: 10.1090/surv/041.  Google Scholar

[16]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional-differential equations, J. Diff. Eqns., 93 (1991), 332-363.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[17]

J. W.-H. SoJ. Wu and X. Zou, Structured population on two patches: Modelling dispersal and delay, J. Math. Biol., 43 (2001), 37-51.  doi: 10.1007/s002850100081.  Google Scholar

[18]

N. Sun and J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 148, 38 pp. doi: 10.1007/s00526-019-1599-8.  Google Scholar

[19]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models, J. Diff. Eqns., 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[20]

F.-B. WangR. Wu and X.-Q. Zhao, A west Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.  doi: 10.1137/18M1236162.  Google Scholar

[21]

J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20 (2007), 2483-2498.  doi: 10.1088/0951-7715/20/11/002.  Google Scholar

[22]

Y. Yuan and X.-Q. Zhao, Global stability for non-monotone delay equations with application to a model of blood cell production, J. Diff. Eqns., 252 (2012), 2189-2209.  doi: 10.1016/j.jde.2011.08.026.  Google Scholar

[23]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay, Can. Appl. Math. Q., 17 (2009), 271-281.   Google Scholar

show all references

References:
[1]

T. AyeJ. Fang and Y. Pan, On a population model in discrete periodic habitat. I. Spreading speed and optimal dispersal strategy}, J. Diff. Eqns., 269 (2020), 9653-9679.  doi: 10.1016/j.jde.2020.06.050.  Google Scholar

[2]

T. Aye, J. Fang and Y. Pan, On a population model in discrete periodic habitat. II. Allee effect and propagation failure, Preprint. Google Scholar

[3]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.  doi: 10.1137/S0036141000376086.  Google Scholar

[4]

S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calc. Var. Partial Differential Equations, 59 (2020), 33, 19 pp. doi: 10.1007/s00526-019-1693-y.  Google Scholar

[5]

J. FangS. A. Gourley and Y. Lou, Stage-structured models of intra- and inter-specific competition within age classes, J. Diff. Eqns., 260 (2016), 1918-1953.  doi: 10.1016/j.jde.2015.09.048.  Google Scholar

[6]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 137â€"200. doi: 10.1090/fic/048/06.  Google Scholar

[7]

W. S. C. GurneyS. P. Blythe and R. M. Bisbet, Bicholson's blowflies revisited, Nature, 287 (1980), 17-21.  doi: 10.1038/287017a0.  Google Scholar

[8]

J. Hale, Theory of Functional Differential Equations, Springer, New York-Hedelberg, 1977. doi: 10.1007/978-1-4612-9892-2.  Google Scholar

[9] B. D. HassardN. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.   Google Scholar
[10]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[11]

A. J. Nicholson, Compensatory reactions of population to stresses, and their evolutionary significance, Aust. J. Zool., 2 (1954), 1-8.  doi: 10.1071/zo9540001.  Google Scholar

[12]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.   Google Scholar

[13]

H. ShuL. Wang and J. Wu, Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations, J. Diff. Eqns., 255 (2013), 2565-2586.  doi: 10.1016/j.jde.2013.06.020.  Google Scholar

[14]

H. ShuL. Wang and J. Wu, Bounded global Hopf branches for stage-structured differential equations with unimodal feedback, Nonlinearity, 30 (2017), 943-964.  doi: 10.1088/1361-6544/aa5497.  Google Scholar

[15]

H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., 1995. doi: 10.1090/surv/041.  Google Scholar

[16]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional-differential equations, J. Diff. Eqns., 93 (1991), 332-363.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[17]

J. W.-H. SoJ. Wu and X. Zou, Structured population on two patches: Modelling dispersal and delay, J. Math. Biol., 43 (2001), 37-51.  doi: 10.1007/s002850100081.  Google Scholar

[18]

N. Sun and J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 148, 38 pp. doi: 10.1007/s00526-019-1599-8.  Google Scholar

[19]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models, J. Diff. Eqns., 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[20]

F.-B. WangR. Wu and X.-Q. Zhao, A west Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.  doi: 10.1137/18M1236162.  Google Scholar

[21]

J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20 (2007), 2483-2498.  doi: 10.1088/0951-7715/20/11/002.  Google Scholar

[22]

Y. Yuan and X.-Q. Zhao, Global stability for non-monotone delay equations with application to a model of blood cell production, J. Diff. Eqns., 252 (2012), 2189-2209.  doi: 10.1016/j.jde.2011.08.026.  Google Scholar

[23]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay, Can. Appl. Math. Q., 17 (2009), 271-281.   Google Scholar

Figure 1.  Parameter regions for different dynamics in $ (\tau,p) $ plane
Figure 2.  Plot of $ S_0(\tau) $ and $ S_1(\tau) $
Figure 3.  (a) $ \tau = 15\le \tau_1 $ and the solution converges to the positive equilibrium; (b) $ \tau = 20>\tau_1 $ but close to $ \tau_1 $, and the solution converges to a periodic solution; (c) $ \tau = 80<\tau_2 $ but close to $ \tau_2 $, and the solution still converges to periodic solution which has a larger period than in (b); (d) $ \tau = 90\in (\tau_2,\tau^*) $, the solution converges to the positive equilibrium
[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[3]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[4]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[5]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[6]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[7]

Chang-Yuan Cheng, Shyan-Shiou Chen, Rui-Hua Chen. Delay-induced spiking dynamics in integrate-and-fire neurons. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020363

[8]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[9]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[10]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[11]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[12]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[13]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[16]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[17]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[18]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[19]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]