
-
Previous Article
Size estimates for the weighted p-Laplace equation with one measurement
- DCDS-B Home
- This Issue
-
Next Article
Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces
On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect
School of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China |
For a stage-structured population model in periodic discrete habitat, with periodic initial values it reduces to a system of two differential equations with time delay. Assuming the birth rate is of unimodal type, we obtain the influence of time delay on the local and global dynamics. In particular, large delay leads to population vanishing. As delay decreases, we found three critical values of delay for the emergence of different dynamics, by appealing to a combination of monotone dynamical system theory, Hopf bifurcation theory and the fluctuation method. Numerical simulations are also performed to illustrate the results.
References:
[1] |
T. Aye, J. Fang and Y. Pan,
On a population model in discrete periodic habitat. I. Spreading speed and optimal dispersal strategy}, J. Diff. Eqns., 269 (2020), 9653-9679.
doi: 10.1016/j.jde.2020.06.050. |
[2] |
T. Aye, J. Fang and Y. Pan, On a population model in discrete periodic habitat. II. Allee effect and propagation failure, Preprint. Google Scholar |
[3] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[4] |
S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calc. Var. Partial Differential Equations, 59 (2020), 33, 19 pp.
doi: 10.1007/s00526-019-1693-y. |
[5] |
J. Fang, S. A. Gourley and Y. Lou,
Stage-structured models of intra- and inter-specific competition within age classes, J. Diff. Eqns., 260 (2016), 1918-1953.
doi: 10.1016/j.jde.2015.09.048. |
[6] |
S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 137â€"200.
doi: 10.1090/fic/048/06. |
[7] |
W. S. C. Gurney, S. P. Blythe and R. M. Bisbet,
Bicholson's blowflies revisited, Nature, 287 (1980), 17-21.
doi: 10.1038/287017a0. |
[8] |
J. Hale, Theory of Functional Differential Equations, Springer, New York-Hedelberg, 1977.
doi: 10.1007/978-1-4612-9892-2. |
[9] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
![]() |
[10] |
S.-B. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[11] |
A. J. Nicholson,
Compensatory reactions of population to stresses, and their evolutionary significance, Aust. J. Zool., 2 (1954), 1-8.
doi: 10.1071/zo9540001. |
[12] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[13] |
H. Shu, L. Wang and J. Wu,
Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations, J. Diff. Eqns., 255 (2013), 2565-2586.
doi: 10.1016/j.jde.2013.06.020. |
[14] |
H. Shu, L. Wang and J. Wu,
Bounded global Hopf branches for stage-structured differential equations with unimodal feedback, Nonlinearity, 30 (2017), 943-964.
doi: 10.1088/1361-6544/aa5497. |
[15] |
H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., 1995.
doi: 10.1090/surv/041. |
[16] |
H. L. Smith and H. R. Thieme,
Strongly order preserving semiflows generated by functional-differential equations, J. Diff. Eqns., 93 (1991), 332-363.
doi: 10.1016/0022-0396(91)90016-3. |
[17] |
J. W.-H. So, J. Wu and X. Zou,
Structured population on two patches: Modelling dispersal and delay, J. Math. Biol., 43 (2001), 37-51.
doi: 10.1007/s002850100081. |
[18] |
N. Sun and J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 148, 38 pp.
doi: 10.1007/s00526-019-1599-8. |
[19] |
H. R. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models, J. Diff. Eqns., 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[20] |
F.-B. Wang, R. Wu and X.-Q. Zhao,
A west Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.
doi: 10.1137/18M1236162. |
[21] |
J. Wei,
Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20 (2007), 2483-2498.
doi: 10.1088/0951-7715/20/11/002. |
[22] |
Y. Yuan and X.-Q. Zhao,
Global stability for non-monotone delay equations with application to a model of blood cell production, J. Diff. Eqns., 252 (2012), 2189-2209.
doi: 10.1016/j.jde.2011.08.026. |
[23] |
X.-Q. Zhao,
Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay, Can. Appl. Math. Q., 17 (2009), 271-281.
|
show all references
References:
[1] |
T. Aye, J. Fang and Y. Pan,
On a population model in discrete periodic habitat. I. Spreading speed and optimal dispersal strategy}, J. Diff. Eqns., 269 (2020), 9653-9679.
doi: 10.1016/j.jde.2020.06.050. |
[2] |
T. Aye, J. Fang and Y. Pan, On a population model in discrete periodic habitat. II. Allee effect and propagation failure, Preprint. Google Scholar |
[3] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[4] |
S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calc. Var. Partial Differential Equations, 59 (2020), 33, 19 pp.
doi: 10.1007/s00526-019-1693-y. |
[5] |
J. Fang, S. A. Gourley and Y. Lou,
Stage-structured models of intra- and inter-specific competition within age classes, J. Diff. Eqns., 260 (2016), 1918-1953.
doi: 10.1016/j.jde.2015.09.048. |
[6] |
S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 137â€"200.
doi: 10.1090/fic/048/06. |
[7] |
W. S. C. Gurney, S. P. Blythe and R. M. Bisbet,
Bicholson's blowflies revisited, Nature, 287 (1980), 17-21.
doi: 10.1038/287017a0. |
[8] |
J. Hale, Theory of Functional Differential Equations, Springer, New York-Hedelberg, 1977.
doi: 10.1007/978-1-4612-9892-2. |
[9] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
![]() |
[10] |
S.-B. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[11] |
A. J. Nicholson,
Compensatory reactions of population to stresses, and their evolutionary significance, Aust. J. Zool., 2 (1954), 1-8.
doi: 10.1071/zo9540001. |
[12] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[13] |
H. Shu, L. Wang and J. Wu,
Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations, J. Diff. Eqns., 255 (2013), 2565-2586.
doi: 10.1016/j.jde.2013.06.020. |
[14] |
H. Shu, L. Wang and J. Wu,
Bounded global Hopf branches for stage-structured differential equations with unimodal feedback, Nonlinearity, 30 (2017), 943-964.
doi: 10.1088/1361-6544/aa5497. |
[15] |
H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., 1995.
doi: 10.1090/surv/041. |
[16] |
H. L. Smith and H. R. Thieme,
Strongly order preserving semiflows generated by functional-differential equations, J. Diff. Eqns., 93 (1991), 332-363.
doi: 10.1016/0022-0396(91)90016-3. |
[17] |
J. W.-H. So, J. Wu and X. Zou,
Structured population on two patches: Modelling dispersal and delay, J. Math. Biol., 43 (2001), 37-51.
doi: 10.1007/s002850100081. |
[18] |
N. Sun and J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 148, 38 pp.
doi: 10.1007/s00526-019-1599-8. |
[19] |
H. R. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models, J. Diff. Eqns., 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[20] |
F.-B. Wang, R. Wu and X.-Q. Zhao,
A west Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.
doi: 10.1137/18M1236162. |
[21] |
J. Wei,
Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20 (2007), 2483-2498.
doi: 10.1088/0951-7715/20/11/002. |
[22] |
Y. Yuan and X.-Q. Zhao,
Global stability for non-monotone delay equations with application to a model of blood cell production, J. Diff. Eqns., 252 (2012), 2189-2209.
doi: 10.1016/j.jde.2011.08.026. |
[23] |
X.-Q. Zhao,
Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay, Can. Appl. Math. Q., 17 (2009), 271-281.
|


[1] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[2] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[3] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[4] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[5] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[6] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[7] |
Chang-Yuan Cheng, Shyan-Shiou Chen, Rui-Hua Chen. Delay-induced spiking dynamics in integrate-and-fire neurons. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020363 |
[8] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[9] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[10] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[11] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[12] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[13] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[14] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[15] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[16] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[17] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[18] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[19] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[20] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]