April  2021, 26(4): 2239-2255. doi: 10.3934/dcdsb.2021007

Traveling wave solutions to diffusive Holling-Tanner predator-prey models

Department of Mathematical Sciences, National Chengchi University, 64, S-2 Zhi-Nan Road, Taipei 116, Taiwan

* Corresponding author: Sheng-Chen Fu

Dedicated to Professor Sze-Bi Hsu

Received  September 2020 Revised  November 2020 Published  April 2021 Early access  December 2020

Fund Project: The second author is supported by MOST grant 109-2115-M-004-004

In this paper, we first establish the existence of semi-traveling wave solutions to a diffusive generalized Holling-Tanner predator-prey model in which the functional response may depend on both the predator and prey populations. Then, by constructing the Lyapunov function, we apply the obtained result to show the existence of traveling wave solutions to the diffusive Holling-Tanner predator-prey models with various functional responses, including the Lotka-Volterra type functional response, the Holling type Ⅱ functional response and the Beddington-DeAngelis functional response.

Citation: Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2239-2255. doi: 10.3934/dcdsb.2021007
References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Diff. Eqns., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[2]

I. Barbălat, Systèmes d'équations différentielles d'oscillations non Linéaires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[3]

Y.-Y. ChenJ.-S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[4]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Eqns., 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[5]

S.-C. Fu, M. Mimura and J.-C. Tsai, Traveling waves in a hybrid model of demic and cultural diffusions in Neolithic transition, submitted. Google Scholar

[6]

J. K. Hale, Ordinary Differential Equations, R. E. Krieger Publ., 1980.  Google Scholar

show all references

References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Diff. Eqns., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[2]

I. Barbălat, Systèmes d'équations différentielles d'oscillations non Linéaires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[3]

Y.-Y. ChenJ.-S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[4]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Eqns., 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[5]

S.-C. Fu, M. Mimura and J.-C. Tsai, Traveling waves in a hybrid model of demic and cultural diffusions in Neolithic transition, submitted. Google Scholar

[6]

J. K. Hale, Ordinary Differential Equations, R. E. Krieger Publ., 1980.  Google Scholar

Figure 1.  The solution as a function of the spatial variable x is plotted at t = 0, t = 10, t = 20 and t = 30. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 1.4 $, $ b = e = 1 $, $ d = 1 $, $ r = 4 $ and $ s = 0.6 $
Figure 2.  The solution as a function of the spatial variable x is plotted at t = 0, t = 5, t = 10 and t = 20. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 4 $, $ b = e = 0 $, $ d = 1 $, $ r = 2 $ and $ s = 0.5 $
Figure 3.  The solution as a function of the spatial variable x is plotted at t = 0, t = 10, t = 20 and t = 30. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 10 $, $ b = 5 $, $ e = 1 $, $ d = 1 $, $ r = 4 $ and $ s = 0.6 $
Figure 4.  The solution as a function of the spatial variable x is plotted at t = 0, t = 5, t = 10 and t = 20. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 10 $, $ b = e = 0 $, $ d = 1 $, $ r = 2 $ and $ s = 0.5 $
[1]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[2]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

[3]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[4]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[5]

Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022

[6]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

[7]

Wenjie Zuo, Junping Shi. Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1179-1200. doi: 10.3934/cpaa.2018057

[8]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[9]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[10]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[11]

Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021211

[12]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[13]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[14]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[15]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[16]

Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154

[17]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[18]

Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 823-834. doi: 10.3934/dcdss.2020047

[19]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[20]

Simone Fagioli, Yahya Jaafra. Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks & Heterogeneous Media, 2021, 16 (3) : 377-411. doi: 10.3934/nhm.2021010

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (215)
  • HTML views (106)
  • Cited by (0)

Other articles
by authors

[Back to Top]