doi: 10.3934/dcdsb.2021007

Traveling wave solutions to diffusive Holling-Tanner predator-prey models

Department of Mathematical Sciences, National Chengchi University, 64, S-2 Zhi-Nan Road, Taipei 116, Taiwan

* Corresponding author: Sheng-Chen Fu

Dedicated to Professor Sze-Bi Hsu

Received  September 2020 Revised  November 2020 Published  December 2020

Fund Project: The second author is supported by MOST grant 109-2115-M-004-004

In this paper, we first establish the existence of semi-traveling wave solutions to a diffusive generalized Holling-Tanner predator-prey model in which the functional response may depend on both the predator and prey populations. Then, by constructing the Lyapunov function, we apply the obtained result to show the existence of traveling wave solutions to the diffusive Holling-Tanner predator-prey models with various functional responses, including the Lotka-Volterra type functional response, the Holling type Ⅱ functional response and the Beddington-DeAngelis functional response.

Citation: Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021007
References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Diff. Eqns., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[2]

I. Barbălat, Systèmes d'équations différentielles d'oscillations non Linéaires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[3]

Y.-Y. ChenJ.-S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[4]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Eqns., 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[5]

S.-C. Fu, M. Mimura and J.-C. Tsai, Traveling waves in a hybrid model of demic and cultural diffusions in Neolithic transition, submitted. Google Scholar

[6]

J. K. Hale, Ordinary Differential Equations, R. E. Krieger Publ., 1980.  Google Scholar

show all references

References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Diff. Eqns., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[2]

I. Barbălat, Systèmes d'équations différentielles d'oscillations non Linéaires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[3]

Y.-Y. ChenJ.-S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[4]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Eqns., 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[5]

S.-C. Fu, M. Mimura and J.-C. Tsai, Traveling waves in a hybrid model of demic and cultural diffusions in Neolithic transition, submitted. Google Scholar

[6]

J. K. Hale, Ordinary Differential Equations, R. E. Krieger Publ., 1980.  Google Scholar

Figure 1.  The solution as a function of the spatial variable x is plotted at t = 0, t = 10, t = 20 and t = 30. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 1.4 $, $ b = e = 1 $, $ d = 1 $, $ r = 4 $ and $ s = 0.6 $
Figure 2.  The solution as a function of the spatial variable x is plotted at t = 0, t = 5, t = 10 and t = 20. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 4 $, $ b = e = 0 $, $ d = 1 $, $ r = 2 $ and $ s = 0.5 $
Figure 3.  The solution as a function of the spatial variable x is plotted at t = 0, t = 10, t = 20 and t = 30. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 10 $, $ b = 5 $, $ e = 1 $, $ d = 1 $, $ r = 4 $ and $ s = 0.6 $
Figure 4.  The solution as a function of the spatial variable x is plotted at t = 0, t = 5, t = 10 and t = 20. The initial data $ (u_0,v_0) $ is chosen so that $ u_0 = 1 $ and $ v_0 = 0.05*(1+sign(51-x))*(1+sign(x-49))/4 $. The parameter values are $ k = 10 $, $ b = e = 0 $, $ d = 1 $, $ r = 2 $ and $ s = 0.5 $
[1]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[2]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[3]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[4]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[7]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[12]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[13]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[19]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[20]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (24)
  • HTML views (43)
  • Cited by (0)

Other articles
by authors

[Back to Top]