
-
Previous Article
Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes
- DCDS-B Home
- This Issue
-
Next Article
Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model
Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination
Department of Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China |
In this paper, a stochastic SIRS epidemic model with nonlinear incidence and vaccination is formulated to investigate the transmission dynamics of infectious diseases. The model not only incorporates the white noise but also the external environmental noise which is described by semi-Markov process. We first derive the explicit expression for the basic reproduction number of the model. Then the global dynamics of the system is studied in terms of the basic reproduction number and the intensity of white noise, and sufficient conditions for the extinction and persistence of the disease are both provided. Furthermore, we explore the sensitivity analysis of $ R_0^s $ with each semi-Markov switching under different distribution functions. The results show that the dynamics of the entire system is not related to its switching law, but has a positive correlation to its mean sojourn time in each subsystem. The basic reproduction number we obtained in the paper can be applied to all piecewise-stochastic semi-Markov processes, and the results of the sensitivity analysis can be regarded as a prior work for optimal control.
References:
[1] |
F. B. Agusto and M. A. Khan,
Optimal control strategies for dengue transmission in Pakistan, Mathematical Biosciences, 305 (2018), 102-121.
doi: 10.1016/j.mbs.2018.09.007. |
[2] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[3] |
J. F. Andrews,
A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, 10 (1968), 707-723.
doi: 10.1002/bit.260100602. |
[4] |
S. M. Blower and H. Dowlatabadi,
Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, International Statistical Review/Revue Internationale de Statistique, 62 (1994), 229-243.
doi: 10.2307/1403510. |
[5] |
X. Cao,
Semi-Markov decision problems and performance sensitivity analysis, IEEE Transactions on Automatic Control, 48 (2003), 758-769.
doi: 10.1109/TAC.2003.811252. |
[6] |
V. Capasso and G. Serio,
A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[7] |
F. H. Chen,
A susceptible-infected epidemic model with voluntary vaccinations, Journal of Mathematical Biology, 53 (2006), 253-272.
doi: 10.1007/s00285-006-0006-1. |
[8] |
P. V. Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[9] |
N. H. Du, N. T. Dieu and N. N. Nhu,
Conditions for permanence and ergodicity of certain SIR epidemic models, Acta Applicandae Mathematicae, 160 (2019), 81-99.
doi: 10.1007/s10440-018-0196-8. |
[10] |
T. Feng and Z. Qiu,
Global analysis of a stochastic TB model with vaccination and treatment, Discrete & Continuous Dynamical Systems-B, 24 (2019), 2923-2939.
doi: 10.3934/dcdsb.2018292. |
[11] |
T. Feng and Z. Qiu,
Analysis of an epidemiological model driven by multiple noises: Ergodicity and convergence rate, Journal of the Franklin Institute, 357 (2020), 2203-2216.
doi: 10.1016/j.jfranklin.2019.09.004. |
[12] |
I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes, II[M], , Springer-Verlag, New York-Heidelberg, 1975. |
[13] |
K. Hattaf, N. Yousfi and A. Tridane,
Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13 (2012), 1866-1872.
doi: 10.1016/j.nonrwa.2011.12.015. |
[14] |
H. W. Hethcote,
Qualitative analyses of communicable disease models, Mathematical Biosciences, 28 (1976), 335-356.
doi: 10.1016/0025-5564(76)90132-2. |
[15] |
H. W. Hethcote and V. Driessche,
Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[16] |
T. K. Kar and A. Batabyal,
Stability analysis and optimal control of an SIR epidemic model with vaccination, Biosystems, 104 (2011), 127-135.
doi: 10.1016/j.biosystems.2011.02.001. |
[17] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society Of London. Series A, Containing Papers of a Mathematical and Physical Character, 115 (1927), 700-721. Google Scholar |
[18] |
A. Lahrouz, L. Omari and D. Kiouach,
Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Applied Mathematics and Computation, 218 (2012), 6519-6525.
doi: 10.1016/j.amc.2011.12.024. |
[19] |
A. Lahrouz and L. Omari,
Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Statistics & Probability Letters, 83 (2013), 960-968.
doi: 10.1016/j.spl.2012.12.021. |
[20] |
J. Li and Z. Ma,
Global analysis of SIS epidemic models with variable total population size, Mathematical and Computer Modelling, 39 (2004), 1231-1242.
doi: 10.1016/j.mcm.2004.06.004. |
[21] |
D. Li, M. Liu and S. Liu,
The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bulletin of Mathematical Biology, 77 (2015), 1705-1743.
doi: 10.1007/s11538-015-0101-9. |
[22] |
D. Li, S. Liu and J. Cui,
Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, Journal of Differential Equations, 263 (2017), 8873-8915.
doi: 10.1016/j.jde.2017.08.066. |
[23] |
D. Li, S. Liu and J. Cui,
Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching, Journal of Differential Equations, 266 (2019), 3973-4017.
doi: 10.1016/j.jde.2018.09.026. |
[24] |
J. Li and Z. Ma,
Global analysis of SIS epidemic models with variable total population size, Mathematical and Computer Modelling, 39 (2004), 1231-1242.
doi: 10.1016/j.mcm.2004.06.004. |
[25] |
M. Li and J. S. Muldowney,
Global stability for the SEIR model in epidemiology, Mathematical Biosciences, 125 (1995), 155-164.
doi: 10.1016/0025-5564(95)92756-5. |
[26] |
N. Limnios and G. Oprisan, Semi-Markov Processes and Reliability[M], Birkhäuser Boston, Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0161-8. |
[27] |
H. Liu, H. Xu and J. Yu,
Stability on coupling SIR epidemic model with vaccination, Journal of Applied Mathematics, 2005 (2005), 301-319.
doi: 10.1155/JAM.2005.301. |
[28] |
X. Mao,
Stability of stochastic differential equations with Markovian switching, Heilongjiang Science & Technology Information, 79 (1999), 45-67.
doi: 10.1016/S0304-4149(98)00070-2. |
[29] |
X. Mao, Stability of stochastic differential equations with markovian switching, Stochastic Processes and their Applications, $\texttt79$ (1999), 45–67.
doi: 10.1016/S0304-4149(98)00070-2. |
[30] |
X. Mao, Stochastic Differential Equations and Applications[M], Elsevier, 2007.
doi: 10.1533/9780857099402. |
[31] |
X. Mao, G. Marion and E. Renshaw,
Environmental noise suppresses explosion in population dynamics, Stochastic Process and their Applications, 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0. |
[32] |
H. Margolis, M. Alter and S. Hadler,
Hepatitis B: Evolving epidemiology and implications for control, Seminars in Liver Disease, 11 (1991), 84-92.
doi: 10.1055/s-2008-1040427. |
[33] |
S. P. Meyn and R. L. Tweedie,
Stability of Markovian processes Ⅱ: Continuous-time processes and sampled chains, Advances in Applied Probability, 25 (1993), 487-517.
doi: 10.2307/1427521. |
[34] |
D. Mollison,
Spatial contact models for ecological and epidemic spread, Journal of the Royal Statistical Society, 39 (1977), 283-326.
doi: 10.1111/j.2517-6161.1977.tb01627.x. |
[35] |
X. Mu and Q. Zhang,
Optimal strategy of vaccination and treatment in an SIRS model with Markovian switching, Mathematical Methods in the Applied Sciences, 42 (2019), 767-789.
doi: 10.1002/mma.5378. |
[36] |
C. Serra, M.D. Martinez and X. Lana,
European dry spell length distributions, years 1951-2000, Theoretical and Applied Climatology, 114 (2013), 531-551.
doi: 10.1007/s00704-013-0857-5. |
[37] |
M. J. Small and D. J. Morgan,
The Relationship between a continuous-time renewal model and a discrete Markov chain model of precipitation occurrence, Water Resources Research, 22 (1986), 1422-1430.
doi: 10.1029/WR022i010p01422. |
[38] |
C. Sun, Y. Hsieh and P. Georgescu,
A model for HIV transmission with two interacting high-risk groups, Nonlinear Analysis: Real World Applications, 40 (2018), 170-184.
doi: 10.1016/j.nonrwa.2017.08.012. |
[39] |
A. Swishchuk and J. Wu, Evolution of Biological Systems in Random Media: Limit Theorems and Stability[M], Springer Science & Business Media, 2003.
doi: 10.1007/978-94-017-1506-5. |
[40] |
E. Vergu, H. Busson and P. Ezanno, Impact of the infection period distribution on the epidemic spread in a meta population model, PloS One, 5 (2010), e9371. Google Scholar |
[41] | K. Wang, Random Mathematical Biology Model,, Science Press, Beijing, 2010. Google Scholar |
[42] |
Y. Wu and X. Zou,
Asymptotic profiles of steady states for a diffusive sis epidemic model with mass action infection mechanism, Journal of Differential Equations, 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
[43] |
D. Xiao and S. Ruan,
Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429.
doi: 10.1016/j.mbs.2006.09.025. |
[44] |
X. Zhang, D. Jiang and A. Alsaedi,
Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Applied Mathematics Letters, 59 (2016), 87-93.
doi: 10.1016/j.aml.2016.03.010. |
[45] |
Y. Zhao and D. Jiang,
The threshold of a stochastic SIS epidemic model with vaccination, Applied Mathematics and Computation, 243 (2014), 718-727.
doi: 10.1016/j.amc.2014.05.124. |
[46] |
Y. Zhao and D. Jiang,
The threshold of a stochastic sirs epidemic model with saturated incidence, Applied Mathematics Letters, 34 (2014), 90-93.
doi: 10.1016/j.aml.2013.11.002. |
[47] |
Y. Zhao, D. Jiang and X. Mao,
The threshold of a stochastic SIRS epidemic model in a population with varying size, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 1277-1295.
doi: 10.3934/dcdsb.2015.20.1277. |
[48] |
B. Zheng, X. Liu, M. Tang and J. Yu,
Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control, Journal of Theoretical Biology, 472 (2019), 95-109.
doi: 10.1016/j.jtbi.2019.04.010. |
[49] |
L. Zu, D. Jiang and D. O'Regan,
Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching, Communications in Nonlinear Science and Numerical Simulation, 29 (2015), 1-11.
doi: 10.1016/j.cnsns.2015.04.008. |
show all references
References:
[1] |
F. B. Agusto and M. A. Khan,
Optimal control strategies for dengue transmission in Pakistan, Mathematical Biosciences, 305 (2018), 102-121.
doi: 10.1016/j.mbs.2018.09.007. |
[2] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[3] |
J. F. Andrews,
A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, 10 (1968), 707-723.
doi: 10.1002/bit.260100602. |
[4] |
S. M. Blower and H. Dowlatabadi,
Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, International Statistical Review/Revue Internationale de Statistique, 62 (1994), 229-243.
doi: 10.2307/1403510. |
[5] |
X. Cao,
Semi-Markov decision problems and performance sensitivity analysis, IEEE Transactions on Automatic Control, 48 (2003), 758-769.
doi: 10.1109/TAC.2003.811252. |
[6] |
V. Capasso and G. Serio,
A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[7] |
F. H. Chen,
A susceptible-infected epidemic model with voluntary vaccinations, Journal of Mathematical Biology, 53 (2006), 253-272.
doi: 10.1007/s00285-006-0006-1. |
[8] |
P. V. Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[9] |
N. H. Du, N. T. Dieu and N. N. Nhu,
Conditions for permanence and ergodicity of certain SIR epidemic models, Acta Applicandae Mathematicae, 160 (2019), 81-99.
doi: 10.1007/s10440-018-0196-8. |
[10] |
T. Feng and Z. Qiu,
Global analysis of a stochastic TB model with vaccination and treatment, Discrete & Continuous Dynamical Systems-B, 24 (2019), 2923-2939.
doi: 10.3934/dcdsb.2018292. |
[11] |
T. Feng and Z. Qiu,
Analysis of an epidemiological model driven by multiple noises: Ergodicity and convergence rate, Journal of the Franklin Institute, 357 (2020), 2203-2216.
doi: 10.1016/j.jfranklin.2019.09.004. |
[12] |
I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes, II[M], , Springer-Verlag, New York-Heidelberg, 1975. |
[13] |
K. Hattaf, N. Yousfi and A. Tridane,
Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13 (2012), 1866-1872.
doi: 10.1016/j.nonrwa.2011.12.015. |
[14] |
H. W. Hethcote,
Qualitative analyses of communicable disease models, Mathematical Biosciences, 28 (1976), 335-356.
doi: 10.1016/0025-5564(76)90132-2. |
[15] |
H. W. Hethcote and V. Driessche,
Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[16] |
T. K. Kar and A. Batabyal,
Stability analysis and optimal control of an SIR epidemic model with vaccination, Biosystems, 104 (2011), 127-135.
doi: 10.1016/j.biosystems.2011.02.001. |
[17] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society Of London. Series A, Containing Papers of a Mathematical and Physical Character, 115 (1927), 700-721. Google Scholar |
[18] |
A. Lahrouz, L. Omari and D. Kiouach,
Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Applied Mathematics and Computation, 218 (2012), 6519-6525.
doi: 10.1016/j.amc.2011.12.024. |
[19] |
A. Lahrouz and L. Omari,
Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Statistics & Probability Letters, 83 (2013), 960-968.
doi: 10.1016/j.spl.2012.12.021. |
[20] |
J. Li and Z. Ma,
Global analysis of SIS epidemic models with variable total population size, Mathematical and Computer Modelling, 39 (2004), 1231-1242.
doi: 10.1016/j.mcm.2004.06.004. |
[21] |
D. Li, M. Liu and S. Liu,
The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bulletin of Mathematical Biology, 77 (2015), 1705-1743.
doi: 10.1007/s11538-015-0101-9. |
[22] |
D. Li, S. Liu and J. Cui,
Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, Journal of Differential Equations, 263 (2017), 8873-8915.
doi: 10.1016/j.jde.2017.08.066. |
[23] |
D. Li, S. Liu and J. Cui,
Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching, Journal of Differential Equations, 266 (2019), 3973-4017.
doi: 10.1016/j.jde.2018.09.026. |
[24] |
J. Li and Z. Ma,
Global analysis of SIS epidemic models with variable total population size, Mathematical and Computer Modelling, 39 (2004), 1231-1242.
doi: 10.1016/j.mcm.2004.06.004. |
[25] |
M. Li and J. S. Muldowney,
Global stability for the SEIR model in epidemiology, Mathematical Biosciences, 125 (1995), 155-164.
doi: 10.1016/0025-5564(95)92756-5. |
[26] |
N. Limnios and G. Oprisan, Semi-Markov Processes and Reliability[M], Birkhäuser Boston, Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0161-8. |
[27] |
H. Liu, H. Xu and J. Yu,
Stability on coupling SIR epidemic model with vaccination, Journal of Applied Mathematics, 2005 (2005), 301-319.
doi: 10.1155/JAM.2005.301. |
[28] |
X. Mao,
Stability of stochastic differential equations with Markovian switching, Heilongjiang Science & Technology Information, 79 (1999), 45-67.
doi: 10.1016/S0304-4149(98)00070-2. |
[29] |
X. Mao, Stability of stochastic differential equations with markovian switching, Stochastic Processes and their Applications, $\texttt79$ (1999), 45–67.
doi: 10.1016/S0304-4149(98)00070-2. |
[30] |
X. Mao, Stochastic Differential Equations and Applications[M], Elsevier, 2007.
doi: 10.1533/9780857099402. |
[31] |
X. Mao, G. Marion and E. Renshaw,
Environmental noise suppresses explosion in population dynamics, Stochastic Process and their Applications, 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0. |
[32] |
H. Margolis, M. Alter and S. Hadler,
Hepatitis B: Evolving epidemiology and implications for control, Seminars in Liver Disease, 11 (1991), 84-92.
doi: 10.1055/s-2008-1040427. |
[33] |
S. P. Meyn and R. L. Tweedie,
Stability of Markovian processes Ⅱ: Continuous-time processes and sampled chains, Advances in Applied Probability, 25 (1993), 487-517.
doi: 10.2307/1427521. |
[34] |
D. Mollison,
Spatial contact models for ecological and epidemic spread, Journal of the Royal Statistical Society, 39 (1977), 283-326.
doi: 10.1111/j.2517-6161.1977.tb01627.x. |
[35] |
X. Mu and Q. Zhang,
Optimal strategy of vaccination and treatment in an SIRS model with Markovian switching, Mathematical Methods in the Applied Sciences, 42 (2019), 767-789.
doi: 10.1002/mma.5378. |
[36] |
C. Serra, M.D. Martinez and X. Lana,
European dry spell length distributions, years 1951-2000, Theoretical and Applied Climatology, 114 (2013), 531-551.
doi: 10.1007/s00704-013-0857-5. |
[37] |
M. J. Small and D. J. Morgan,
The Relationship between a continuous-time renewal model and a discrete Markov chain model of precipitation occurrence, Water Resources Research, 22 (1986), 1422-1430.
doi: 10.1029/WR022i010p01422. |
[38] |
C. Sun, Y. Hsieh and P. Georgescu,
A model for HIV transmission with two interacting high-risk groups, Nonlinear Analysis: Real World Applications, 40 (2018), 170-184.
doi: 10.1016/j.nonrwa.2017.08.012. |
[39] |
A. Swishchuk and J. Wu, Evolution of Biological Systems in Random Media: Limit Theorems and Stability[M], Springer Science & Business Media, 2003.
doi: 10.1007/978-94-017-1506-5. |
[40] |
E. Vergu, H. Busson and P. Ezanno, Impact of the infection period distribution on the epidemic spread in a meta population model, PloS One, 5 (2010), e9371. Google Scholar |
[41] | K. Wang, Random Mathematical Biology Model,, Science Press, Beijing, 2010. Google Scholar |
[42] |
Y. Wu and X. Zou,
Asymptotic profiles of steady states for a diffusive sis epidemic model with mass action infection mechanism, Journal of Differential Equations, 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
[43] |
D. Xiao and S. Ruan,
Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429.
doi: 10.1016/j.mbs.2006.09.025. |
[44] |
X. Zhang, D. Jiang and A. Alsaedi,
Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Applied Mathematics Letters, 59 (2016), 87-93.
doi: 10.1016/j.aml.2016.03.010. |
[45] |
Y. Zhao and D. Jiang,
The threshold of a stochastic SIS epidemic model with vaccination, Applied Mathematics and Computation, 243 (2014), 718-727.
doi: 10.1016/j.amc.2014.05.124. |
[46] |
Y. Zhao and D. Jiang,
The threshold of a stochastic sirs epidemic model with saturated incidence, Applied Mathematics Letters, 34 (2014), 90-93.
doi: 10.1016/j.aml.2013.11.002. |
[47] |
Y. Zhao, D. Jiang and X. Mao,
The threshold of a stochastic SIRS epidemic model in a population with varying size, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 1277-1295.
doi: 10.3934/dcdsb.2015.20.1277. |
[48] |
B. Zheng, X. Liu, M. Tang and J. Yu,
Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control, Journal of Theoretical Biology, 472 (2019), 95-109.
doi: 10.1016/j.jtbi.2019.04.010. |
[49] |
L. Zu, D. Jiang and D. O'Regan,
Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching, Communications in Nonlinear Science and Numerical Simulation, 29 (2015), 1-11.
doi: 10.1016/j.cnsns.2015.04.008. |






Natation | Biological meanings |
Number of susceptibles at time |
|
Number of infective individuals at time |
|
Number of recovered individuals at time |
|
Standard Brownian motion in one dimension | |
The intensity of |
|
The recruitment rate of the population | |
The proportion of population that is vaccinated | |
The death rates of susceptibles, infectives, and recovered individuals | |
The infection coefficient | |
The death rate of infected individuals from disease-related causes | |
The recovery rate of the infective individuals | |
The recovered individuals immunity lose rate |
Natation | Biological meanings |
Number of susceptibles at time |
|
Number of infective individuals at time |
|
Number of recovered individuals at time |
|
Standard Brownian motion in one dimension | |
The intensity of |
|
The recruitment rate of the population | |
The proportion of population that is vaccinated | |
The death rates of susceptibles, infectives, and recovered individuals | |
The infection coefficient | |
The death rate of infected individuals from disease-related causes | |
The recovery rate of the infective individuals | |
The recovered individuals immunity lose rate |
Parameters | Value | Source |
p | 0.833 | [26] |
0.33 |
[11,25] | |
0.006 |
[11,25] | |
0.06 |
[11,25] | |
0.0056 |
[11,25] | |
0.0013 |
[11,25] | |
0.021 |
[11,25] | |
0.01 |
[11,25] | |
0.001 | [11,25] | |
0.001 | [11,25] | |
0.04 | Estimated |
Parameters | Value | Source |
p | 0.833 | [26] |
0.33 |
[11,25] | |
0.006 |
[11,25] | |
0.06 |
[11,25] | |
0.0056 |
[11,25] | |
0.0013 |
[11,25] | |
0.021 |
[11,25] | |
0.01 |
[11,25] | |
0.001 | [11,25] | |
0.001 | [11,25] | |
0.04 | Estimated |
Symbols | Definition | Value |
Total simulation time | 10 | |
Every checkpoint | ||
Accumulation of time of per cycle | - - | |
Time interval between each jump | 1 | |
The states of the semi-Markov switching | {1, 2} | |
The state of the semi-Markov chain in |
1 or 2 | |
The state of the discrete chain in |
1 or 2 | |
The transition probability matrix | - - |
Symbols | Definition | Value |
Total simulation time | 10 | |
Every checkpoint | ||
Accumulation of time of per cycle | - - | |
Time interval between each jump | 1 | |
The states of the semi-Markov switching | {1, 2} | |
The state of the semi-Markov chain in |
1 or 2 | |
The state of the discrete chain in |
1 or 2 | |
The transition probability matrix | - - |
[1] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[2] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[3] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[4] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[5] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[6] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[7] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[8] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[9] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[10] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[11] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[12] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[13] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[14] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[15] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[16] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[17] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[18] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[19] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[20] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]