
-
Previous Article
On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation
- DCDS-B Home
- This Issue
-
Next Article
Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation
Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays
School of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
We consider a two-species Lotka-Volterra competition system with both local and nonlocal intraspecific and interspecific competitions under the homogeneous Neumann condition. Firstly, we obtain conditions for the existence of Hopf, Turing, Turing-Hopf bifurcations and the necessary and sufficient condition that Turing instability occurs in the weak competition case, and find that the strength of nonlocal intraspecific competitions is the key factor for the stability of coexistence equilibrium. Secondly, we derive explicit formulas of normal forms up to order 3 by applying center manifold theory and normal form method, in which we show the difference compared with system without nonlocal terms in calculating coefficients of normal forms. Thirdly, the existence of complex spatiotemporal phenomena, such as the spatial homogeneous periodic orbit, a pair of stable spatial inhomogeneous steady states and a pair of stable spatial inhomogeneous periodic orbits, is rigorously proved by analyzing the amplitude equations. It is shown that suitably strong nonlocal intraspecific competitions and nonlocal delays can result in various coexistence states for the competition system in the weak competition case. Lastly, these complex spatiotemporal patterns are presented in the numerical results.
References:
[1] |
Q. An and W. Jiang,
Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.
doi: 10.3934/dcdsb.2018183. |
[2] |
E. Beretta and Y. Tang,
Extension of a geometric stability switch criterion, Funkc. Ekvacioj, 46 (2003), 337-361.
doi: 10.1619/fesi.46.337. |
[3] |
N. F. Britton,
Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.
doi: 10.1137/0150099. |
[4] |
X. Cao and W. Jiang,
Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response, Nonlinear Anal. Real World Appl., 43 (2018), 428-450.
doi: 10.1016/j.nonrwa.2018.03.010. |
[5] |
S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calculus of Variations and Partial Differential Equations, 59 (2020), Article number: 33.
doi: 10.1007/s00526-019-1693-y. |
[6] |
S. Chen and J. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equ., 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[7] |
X. Chen and W. Jiang,
Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 49 (2019), 386-404.
doi: 10.1016/j.nonrwa.2019.03.013. |
[8] |
X. Chen, W. Jiang and S. Ruan, Global dynamics and complex patterns in Lotka-Volterra systems: The effects of both local and nonlocal intraspecific and interspecific competitions, To appear. Google Scholar |
[9] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski,
The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.
doi: 10.1007/s002850050120. |
[10] |
H. I. Freedman and Y. Kuang,
Stability switches in linear scalar neutral delay equations, Funkc. Ekvacioj, 34 (1991), 187-209.
|
[11] |
J. Furter and M. Grinfeld,
Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[12] |
S. A. Gourley and N. F. Britton,
A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.
doi: 10.1007/BF00160498. |
[13] |
S. A. Gourley and S. Ruan,
Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.
doi: 10.1137/S003614100139991. |
[14] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[15] |
S. A. Gourley, J. W.-H. So and J. Wu,
Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
doi: 10.1023/B:JOTH.0000047249.39572.6d. |
[16] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[17] |
S. Guo and S. Yan,
Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect, J. Differ. Equ., 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031. |
[18] |
X. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[19] |
R. Hu and Y. Yuan,
Spatially nonhomogeneous equilibrium in a reaction–diffusion system with distributed delay, J. Differ. Equ., 250 (2011), 2779-2806.
doi: 10.1016/j.jde.2011.01.011. |
[20] |
W. Jiang, Q. An and J. Shi,
Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations, J. Differ. Equ., 268 (2019), 6067-6102.
doi: 10.1016/j.jde.2019.11.039. |
[21] |
W. Jiang, H. Wang and X. Cao,
Turing instability and Turing-Hopf bifurcation in diffusive schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 31 (2019), 2223-2247.
doi: 10.1007/s10884-018-9702-y. |
[22] |
Y. Kuang and H. L. Smith,
Convergence in Lotka-Volterra typediffusive delay systems withoutdominating instantaneous negative feedbacks, J. Austral. Math. Soc. Ser. B, 34 (1993), 471-493.
doi: 10.1017/S0334270000009036. |
[23] |
A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, New York, 1925. Google Scholar |
[24] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[25] |
Y. Lou and P. Zhou,
Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differ. Equ., 259 (2015), 141-171.
doi: 10.1016/j.jde.2015.02.004. |
[26] |
W. Ni, J. Shi and M. Wang,
Global stability and pattern formation in a nonlocal diffusive Lotka–Volterra competition model, J. Differ. Equ., 264 (2018), 6891-6932.
doi: 10.1016/j.jde.2018.02.002. |
[27] |
S. Pal, S. Petrovskii, S. Ghorai and M. Banerjee, Spatiotemporal pattern formation in 2d prey-predator system with nonlocal intraspecific competition, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105478, 15pp.
doi: 10.1016/j.cnsns.2020.105478. |
[28] |
C. V. Pao,
Global asymptotic stability of Lotka-Vlterra competition systems with diffusion and time delays, Nonlinear Anal. Real World Appl., 5 (2004), 91-104.
doi: 10.1016/S1468-1218(03)00018-X. |
[29] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[30] |
V. P. Shukla,
Conditions for global stability of two-species population models with discrete time delay, Bull. Math. Biol., 45 (1983), 793-805.
|
[31] |
Y. Song, M. Han and Y. Peng,
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays, Chaos Solitons Fract., 22 (2004), 1139-1148.
doi: 10.1016/j.chaos.2004.03.026. |
[32] |
Y. Song, H. Jiang, Q. Liu and Y. Yuan,
Spatiotemporal dynamics of the diffusive mussel-algae model near turing-hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.
doi: 10.1137/16M1097560. |
[33] |
Y. Song, T. Zhang and Y. Peng,
Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229-258.
doi: 10.1016/j.cnsns.2015.10.002. |
[34] |
Y. Tang and L. Zhou,
Hopf bifurcation and stability of a competition diffusion system with distributed delay, Publ. RIMS, Kyoto Univ., 41 (2005), 579-597.
doi: 10.2977/prims/1145475224. |
[35] |
V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Licei., 2 (1926), 31-113. Google Scholar |
[36] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[37] |
Y. Yamada,
Asymptotic stability for some systems of semilinear Volterra diffusion equations, J. Differ. Equ., 52 (1984), 295-326.
doi: 10.1016/0022-0396(84)90165-7. |
[38] |
Y. Yamada,
On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal.-Theory Methods Appl., 118 (2015), 51-62.
doi: 10.1016/j.na.2015.01.016. |
[39] |
J. Zhang, W. Li and X. Yan, Bifurcation and spatiotemporal patterns in a homogeneous diffusion-competition system with delays, Int. J. Biomath., 5 (2012), 1250049, 23pp.
doi: 10.1142/S1793524512500490. |
show all references
References:
[1] |
Q. An and W. Jiang,
Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 487-510.
doi: 10.3934/dcdsb.2018183. |
[2] |
E. Beretta and Y. Tang,
Extension of a geometric stability switch criterion, Funkc. Ekvacioj, 46 (2003), 337-361.
doi: 10.1619/fesi.46.337. |
[3] |
N. F. Britton,
Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.
doi: 10.1137/0150099. |
[4] |
X. Cao and W. Jiang,
Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response, Nonlinear Anal. Real World Appl., 43 (2018), 428-450.
doi: 10.1016/j.nonrwa.2018.03.010. |
[5] |
S. Chen and J. Shi, Global dynamics of the diffusive Lotka-Volterra competition model with stage structure, Calculus of Variations and Partial Differential Equations, 59 (2020), Article number: 33.
doi: 10.1007/s00526-019-1693-y. |
[6] |
S. Chen and J. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equ., 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[7] |
X. Chen and W. Jiang,
Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 49 (2019), 386-404.
doi: 10.1016/j.nonrwa.2019.03.013. |
[8] |
X. Chen, W. Jiang and S. Ruan, Global dynamics and complex patterns in Lotka-Volterra systems: The effects of both local and nonlocal intraspecific and interspecific competitions, To appear. Google Scholar |
[9] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski,
The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.
doi: 10.1007/s002850050120. |
[10] |
H. I. Freedman and Y. Kuang,
Stability switches in linear scalar neutral delay equations, Funkc. Ekvacioj, 34 (1991), 187-209.
|
[11] |
J. Furter and M. Grinfeld,
Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[12] |
S. A. Gourley and N. F. Britton,
A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.
doi: 10.1007/BF00160498. |
[13] |
S. A. Gourley and S. Ruan,
Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.
doi: 10.1137/S003614100139991. |
[14] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[15] |
S. A. Gourley, J. W.-H. So and J. Wu,
Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.
doi: 10.1023/B:JOTH.0000047249.39572.6d. |
[16] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[17] |
S. Guo and S. Yan,
Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect, J. Differ. Equ., 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031. |
[18] |
X. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[19] |
R. Hu and Y. Yuan,
Spatially nonhomogeneous equilibrium in a reaction–diffusion system with distributed delay, J. Differ. Equ., 250 (2011), 2779-2806.
doi: 10.1016/j.jde.2011.01.011. |
[20] |
W. Jiang, Q. An and J. Shi,
Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations, J. Differ. Equ., 268 (2019), 6067-6102.
doi: 10.1016/j.jde.2019.11.039. |
[21] |
W. Jiang, H. Wang and X. Cao,
Turing instability and Turing-Hopf bifurcation in diffusive schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 31 (2019), 2223-2247.
doi: 10.1007/s10884-018-9702-y. |
[22] |
Y. Kuang and H. L. Smith,
Convergence in Lotka-Volterra typediffusive delay systems withoutdominating instantaneous negative feedbacks, J. Austral. Math. Soc. Ser. B, 34 (1993), 471-493.
doi: 10.1017/S0334270000009036. |
[23] |
A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, New York, 1925. Google Scholar |
[24] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[25] |
Y. Lou and P. Zhou,
Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differ. Equ., 259 (2015), 141-171.
doi: 10.1016/j.jde.2015.02.004. |
[26] |
W. Ni, J. Shi and M. Wang,
Global stability and pattern formation in a nonlocal diffusive Lotka–Volterra competition model, J. Differ. Equ., 264 (2018), 6891-6932.
doi: 10.1016/j.jde.2018.02.002. |
[27] |
S. Pal, S. Petrovskii, S. Ghorai and M. Banerjee, Spatiotemporal pattern formation in 2d prey-predator system with nonlocal intraspecific competition, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105478, 15pp.
doi: 10.1016/j.cnsns.2020.105478. |
[28] |
C. V. Pao,
Global asymptotic stability of Lotka-Vlterra competition systems with diffusion and time delays, Nonlinear Anal. Real World Appl., 5 (2004), 91-104.
doi: 10.1016/S1468-1218(03)00018-X. |
[29] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[30] |
V. P. Shukla,
Conditions for global stability of two-species population models with discrete time delay, Bull. Math. Biol., 45 (1983), 793-805.
|
[31] |
Y. Song, M. Han and Y. Peng,
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays, Chaos Solitons Fract., 22 (2004), 1139-1148.
doi: 10.1016/j.chaos.2004.03.026. |
[32] |
Y. Song, H. Jiang, Q. Liu and Y. Yuan,
Spatiotemporal dynamics of the diffusive mussel-algae model near turing-hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.
doi: 10.1137/16M1097560. |
[33] |
Y. Song, T. Zhang and Y. Peng,
Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229-258.
doi: 10.1016/j.cnsns.2015.10.002. |
[34] |
Y. Tang and L. Zhou,
Hopf bifurcation and stability of a competition diffusion system with distributed delay, Publ. RIMS, Kyoto Univ., 41 (2005), 579-597.
doi: 10.2977/prims/1145475224. |
[35] |
V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Licei., 2 (1926), 31-113. Google Scholar |
[36] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[37] |
Y. Yamada,
Asymptotic stability for some systems of semilinear Volterra diffusion equations, J. Differ. Equ., 52 (1984), 295-326.
doi: 10.1016/0022-0396(84)90165-7. |
[38] |
Y. Yamada,
On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal.-Theory Methods Appl., 118 (2015), 51-62.
doi: 10.1016/j.na.2015.01.016. |
[39] |
J. Zhang, W. Li and X. Yan, Bifurcation and spatiotemporal patterns in a homogeneous diffusion-competition system with delays, Int. J. Biomath., 5 (2012), 1250049, 23pp.
doi: 10.1142/S1793524512500490. |






Parameters | ||||||||||
Values |
Parameters | ||||||||||
Values |
Parameters | |||||||||||
Values |
Parameters | |||||||||||
Values |
[1] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[2] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[3] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[4] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[5] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[6] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[7] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[8] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[9] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[10] |
Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020359 |
[11] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[12] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[13] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[14] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[15] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[16] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[17] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[18] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[19] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[20] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]