doi: 10.3934/dcdsb.2021017
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R.China

* Corresponding author: zhangkj201@nenu.edu.cn

Received  August 2020 Revised  November 2020 Early access January 2021

Fund Project: The third author is supported by National Science Foundation of China (No. 11771071)

We are interested in the existence and stability of traveling waves of arbitrary amplitudes to a chemotaxis model with porous medium diffusion. We first make a complete classification of traveling waves under specific relations among the biological parameters. Then we show all these traveling waves are asymptotically stable under appropriate perturbations. The proof is based on a Cole-Hopf transformation and the energy method.

Citation: Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021017
References:
[1]

M. BurgerM. Di Francesco and Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315.  doi: 10.1137/050637923.  Google Scholar

[2]

S.-H. Choi and Y.-J. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090, 21 pp. doi: 10.1016/j.jmaa.2020.124090.  Google Scholar

[3]

C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.  doi: 10.1016/j.jde.2014.05.014.  Google Scholar

[4]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51-69.   Google Scholar

[6]

H.-Y. JinJ. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[7]

Y. V. KalininL. JiangY. Tu and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439-2448.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[8]

S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Comm. Pure Appl. Math., 47 (1994), 1547-1569.  doi: 10.1002/cpa.3160471202.  Google Scholar

[9]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 26 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[10]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.  doi: 10.1137/S0036139995291106.  Google Scholar

[11]

D. LiR. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[12]

J. Li and Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differential Equations, 268 (2020), 6940-6970.  doi: 10.1016/j.jde.2019.11.076.  Google Scholar

[13]

T. LiR. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443.  doi: 10.1137/110829453.  Google Scholar

[14]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[15]

V. R. MartinezZ.-A. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[16]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25.  doi: 10.1007/BF03167036.  Google Scholar

[17]

T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics, Publications Math'ematiques d'Orsay 78-02, D'epartement de Math'ematique, Universit'e de ParisSud, Orsay, France, 1978.  Google Scholar

[18]

M. OlsonR. FordJ. Smith and E. Fernandez, Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging, Environ. Sci. Technol., 38 (2004), 3864-3870.  doi: 10.1021/es035236s.  Google Scholar

[19]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.  doi: 10.1137/S0036139995288976.  Google Scholar

[20]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914.  doi: 10.3934/dcds.2012.32.1901.  Google Scholar

[21]

F. Valdés-ParadaM. PorterK. NarayanaswamyR. Ford and B. Wood, Upscaling microbial chemotaxis in porous media, Adv. Water Resour., 32 (2009), 1413-1428.   Google Scholar

[22]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis: A review paper, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[23]

Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.  doi: 10.1002/mma.898.  Google Scholar

[24]

Z.-A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[25]

Y. YangH. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.  doi: 10.1137/S0036141000337796.  Google Scholar

[26]

Y. YangH. ChenW. Liu and B. D. Sleeman, The solvability of some chemotaxis systems, J. Differential Equations, 212 (2005), 432-451.  doi: 10.1016/j.jde.2005.01.002.  Google Scholar

[27]

M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

show all references

References:
[1]

M. BurgerM. Di Francesco and Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315.  doi: 10.1137/050637923.  Google Scholar

[2]

S.-H. Choi and Y.-J. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090, 21 pp. doi: 10.1016/j.jmaa.2020.124090.  Google Scholar

[3]

C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.  doi: 10.1016/j.jde.2014.05.014.  Google Scholar

[4]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51-69.   Google Scholar

[6]

H.-Y. JinJ. Li and Z.-A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[7]

Y. V. KalininL. JiangY. Tu and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439-2448.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[8]

S. Kawashima and A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Comm. Pure Appl. Math., 47 (1994), 1547-1569.  doi: 10.1002/cpa.3160471202.  Google Scholar

[9]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 26 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[10]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.  doi: 10.1137/S0036139995291106.  Google Scholar

[11]

D. LiR. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[12]

J. Li and Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differential Equations, 268 (2020), 6940-6970.  doi: 10.1016/j.jde.2019.11.076.  Google Scholar

[13]

T. LiR. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443.  doi: 10.1137/110829453.  Google Scholar

[14]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[15]

V. R. MartinezZ.-A. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[16]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25.  doi: 10.1007/BF03167036.  Google Scholar

[17]

T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics, Publications Math'ematiques d'Orsay 78-02, D'epartement de Math'ematique, Universit'e de ParisSud, Orsay, France, 1978.  Google Scholar

[18]

M. OlsonR. FordJ. Smith and E. Fernandez, Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging, Environ. Sci. Technol., 38 (2004), 3864-3870.  doi: 10.1021/es035236s.  Google Scholar

[19]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.  doi: 10.1137/S0036139995288976.  Google Scholar

[20]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914.  doi: 10.3934/dcds.2012.32.1901.  Google Scholar

[21]

F. Valdés-ParadaM. PorterK. NarayanaswamyR. Ford and B. Wood, Upscaling microbial chemotaxis in porous media, Adv. Water Resour., 32 (2009), 1413-1428.   Google Scholar

[22]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis: A review paper, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[23]

Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.  doi: 10.1002/mma.898.  Google Scholar

[24]

Z.-A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[25]

Y. YangH. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.  doi: 10.1137/S0036141000337796.  Google Scholar

[26]

Y. YangH. ChenW. Liu and B. D. Sleeman, The solvability of some chemotaxis systems, J. Differential Equations, 212 (2005), 432-451.  doi: 10.1016/j.jde.2005.01.002.  Google Scholar

[27]

M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

[1]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[2]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[3]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[4]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[5]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[6]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[7]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[8]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[9]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[10]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[11]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

[12]

Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 379-395. doi: 10.3934/nhm.2013.8.379

[13]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[14]

Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801

[15]

Zhen-Hui Bu, Zhi-Cheng Wang. Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2395-2430. doi: 10.3934/dcds.2017104

[16]

Hirokazu Ninomiya, Masaharu Taniguchi. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 819-832. doi: 10.3934/dcds.2006.15.819

[17]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[18]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[19]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[20]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (201)
  • HTML views (404)
  • Cited by (0)

Other articles
by authors

[Back to Top]