doi: 10.3934/dcdsb.2021021

Singularity formation to the nonhomogeneous magneto-micropolar fluid equations

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  August 2020 Revised  November 2020 Published  January 2021

Fund Project: This research was partially supported by National Natural Science Foundation of China (No. 11901474) and the Innovation Support Program for Chongqing Overseas Returnees (No. cx2020082)

We consider the Cauchy problem of nonhomogeneous magneto-micropolar fluid equations with zero density at infinity in the entire space $ \mathbb{R}^2 $. We show that for the initial density allowing vacuum, the strong solution exists globally if a weighted density is bounded from above. It should be noted that our blow-up criterion is independent of micro-rotational velocity and magnetic field.

Citation: Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021021
References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Internat. J. Engrg. Sci., 12 (1974), 657-663.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

B. Berkovski and V. Bashtovoy, Magnetic Fluids and Applications Handbook, Begell House, New York, 1996. Google Scholar

[3]

P. Braz e SilvaL. Friz and M. A. Rojas-Medar, Exponential stability for magneto-micropolar fluids, Nonlinear Anal., 143 (2016), 211-223.  doi: 10.1016/j.na.2016.05.015.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158.  doi: 10.1007/s002050050025.  Google Scholar

[6]

J. Li and Z. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Ann. PDE, 5 (2019), Paper No. 7. doi: 10.1007/s40818-019-0064-5.  Google Scholar

[7]

M. Li and H. Shang, Large time decay of solutions for the 3D magneto-micropolar equations, Nonlinear Anal. Real World Appl., 44 (2018), 479-496.  doi: 10.1016/j.nonrwa.2018.05.013.  Google Scholar

[8]

Z. Liang, Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids, J. Differential Equations, 258 (2015), 2633-2654.  doi: 10.1016/j.jde.2014.12.015.  Google Scholar

[9] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. Ⅰ: Incompressible Models, Oxford University Press, Oxford, 1996.   Google Scholar
[10]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Birkhäuser, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[11]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[12]

L. Ma, On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity, Nonlinear Anal. Real World Appl., 40 (2018), 95-129.  doi: 10.1016/j.nonrwa.2017.08.014.  Google Scholar

[13]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[14]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: on the convergence rate of the spectral Galerkin approximations, Z. Angew. Math. Mech., 77 (1997), 723-732.  doi: 10.1002/zamm.19970771003.  Google Scholar

[15]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.   Google Scholar

[16]

H. Shang and J. Zhao, Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion, Nonlinear Anal., 150 (2017), 194-209.  doi: 10.1016/j.na.2016.11.011.  Google Scholar

[17]

Z. TanW. Wu and J. Zhou, Global existence and decay estimate of solutions to magneto-micropolar fluid equations, J. Differential Equations, 266 (2019), 4137-4169.  doi: 10.1016/j.jde.2018.09.027.  Google Scholar

[18]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[19]

Y. Wang and K. Wang, Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity, Nonlinear Anal. Real World Appl., 33 (2017), 348-362.  doi: 10.1016/j.nonrwa.2016.07.003.  Google Scholar

[20]

Y.-Z. Wang and Y.-X. Wang, Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity, Math. Methods Appl. Sci., 34 (2011), 2125-2135.   Google Scholar

[21]

K. Yamazaki, Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discrete Contin. Dyn. Syst., 35 (2015), 2193-2207.  doi: 10.3934/dcds.2015.35.2193.  Google Scholar

[22]

K. Yamazaki, Large deviation principle for the micropolar, magneto-micropolar fluid systems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 913-938.  doi: 10.3934/dcdsb.2018048.  Google Scholar

[23]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113-1130.   Google Scholar

[24]

P. Zhang and M. Zhu, Global regularity of 3D nonhomogeneous incompressible magneto-micropolar system with the density-dependent viscosity, Comput. Math. Appl., 76 (2018), 2304-2314.  doi: 10.1016/j.camwa.2018.08.041.  Google Scholar

[25]

X. Zhong, Global existence and exponential decay of strong solutions to nonhomogeneous magneto-micropolar fluid equations with large initial data and vacuum, J. Math. Fluid Mech., 22 (2020), Paper No. 35. doi: 10.1007/s00021-020-00498-3.  Google Scholar

[26]

X. Zhong, A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4603-4615.  doi: 10.3934/dcdsb.2020115.  Google Scholar

[27]

X. Zhong, Local strong solutions to the Cauchy problem of two-dimensional nonhomogeneous magneto-micropolar fluid equations with nonnegative density, Anal. Appl. (Singap.). doi: 10.1142/S0219530519500167.  Google Scholar

show all references

References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Internat. J. Engrg. Sci., 12 (1974), 657-663.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

B. Berkovski and V. Bashtovoy, Magnetic Fluids and Applications Handbook, Begell House, New York, 1996. Google Scholar

[3]

P. Braz e SilvaL. Friz and M. A. Rojas-Medar, Exponential stability for magneto-micropolar fluids, Nonlinear Anal., 143 (2016), 211-223.  doi: 10.1016/j.na.2016.05.015.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158.  doi: 10.1007/s002050050025.  Google Scholar

[6]

J. Li and Z. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Ann. PDE, 5 (2019), Paper No. 7. doi: 10.1007/s40818-019-0064-5.  Google Scholar

[7]

M. Li and H. Shang, Large time decay of solutions for the 3D magneto-micropolar equations, Nonlinear Anal. Real World Appl., 44 (2018), 479-496.  doi: 10.1016/j.nonrwa.2018.05.013.  Google Scholar

[8]

Z. Liang, Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids, J. Differential Equations, 258 (2015), 2633-2654.  doi: 10.1016/j.jde.2014.12.015.  Google Scholar

[9] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. Ⅰ: Incompressible Models, Oxford University Press, Oxford, 1996.   Google Scholar
[10]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Birkhäuser, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[11]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[12]

L. Ma, On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity, Nonlinear Anal. Real World Appl., 40 (2018), 95-129.  doi: 10.1016/j.nonrwa.2017.08.014.  Google Scholar

[13]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[14]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: on the convergence rate of the spectral Galerkin approximations, Z. Angew. Math. Mech., 77 (1997), 723-732.  doi: 10.1002/zamm.19970771003.  Google Scholar

[15]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.   Google Scholar

[16]

H. Shang and J. Zhao, Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion, Nonlinear Anal., 150 (2017), 194-209.  doi: 10.1016/j.na.2016.11.011.  Google Scholar

[17]

Z. TanW. Wu and J. Zhou, Global existence and decay estimate of solutions to magneto-micropolar fluid equations, J. Differential Equations, 266 (2019), 4137-4169.  doi: 10.1016/j.jde.2018.09.027.  Google Scholar

[18]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[19]

Y. Wang and K. Wang, Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity, Nonlinear Anal. Real World Appl., 33 (2017), 348-362.  doi: 10.1016/j.nonrwa.2016.07.003.  Google Scholar

[20]

Y.-Z. Wang and Y.-X. Wang, Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity, Math. Methods Appl. Sci., 34 (2011), 2125-2135.   Google Scholar

[21]

K. Yamazaki, Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discrete Contin. Dyn. Syst., 35 (2015), 2193-2207.  doi: 10.3934/dcds.2015.35.2193.  Google Scholar

[22]

K. Yamazaki, Large deviation principle for the micropolar, magneto-micropolar fluid systems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 913-938.  doi: 10.3934/dcdsb.2018048.  Google Scholar

[23]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113-1130.   Google Scholar

[24]

P. Zhang and M. Zhu, Global regularity of 3D nonhomogeneous incompressible magneto-micropolar system with the density-dependent viscosity, Comput. Math. Appl., 76 (2018), 2304-2314.  doi: 10.1016/j.camwa.2018.08.041.  Google Scholar

[25]

X. Zhong, Global existence and exponential decay of strong solutions to nonhomogeneous magneto-micropolar fluid equations with large initial data and vacuum, J. Math. Fluid Mech., 22 (2020), Paper No. 35. doi: 10.1007/s00021-020-00498-3.  Google Scholar

[26]

X. Zhong, A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4603-4615.  doi: 10.3934/dcdsb.2020115.  Google Scholar

[27]

X. Zhong, Local strong solutions to the Cauchy problem of two-dimensional nonhomogeneous magneto-micropolar fluid equations with nonnegative density, Anal. Appl. (Singap.). doi: 10.1142/S0219530519500167.  Google Scholar

[1]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[2]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[7]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[8]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[9]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[12]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[13]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[14]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[17]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[18]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[19]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[20]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (11)
  • HTML views (28)
  • Cited by (0)

Other articles
by authors

[Back to Top]