\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform stabilization of 1-D Schrödinger equation with internal difference-type control

  • * Corresponding author: Xiaorui Wang

    * Corresponding author: Xiaorui Wang 

This project is partially supported by the National Natural Science Foundation in China (NSFC 61773277), and partially supported by NSF of Qinghai Province (2017-ZJ-908)

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • In this paper, we consider the stabilization problem of 1-D Schrödinger equation with internal difference-type control. Different from the other existing approaches of controller design, we introduce a new approach of controller design so called the parameterization controller. At first, we rewrite the system with internal difference-type control as a cascaded system of a transport equation and Schödinger equation; Further, to stabilize the system under consideration, we construct a target system that has exponential stability. By selecting the solution of nonlocal and singular initial value problem as parameter function and defining a bounded linear transformation, we show that the transformation maps the closed-loop system to the target system; Finally, we prove that the transformation is bounded inverse. Hence the closed-loop system is equivalent to the target system.

    Mathematics Subject Classification: Primary: 35J10, 93C20; Secondary: 93D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The dynamic behaviour of system (1) for $ \alpha = \beta = 0 $

    Figure 2.  The dynamic behaviour of system (1) for $ \alpha = 1, \beta = 0 $ under $ U(t) = -kw(x,t) $

    Figure 3.  The dynamic behaviour of system (1) for $ \alpha = 2, \beta = 1 $ under $ U(t) = -kw(x,t) $

    Figure 4.  The dynamic behaviour of system (1) for $ \alpha = 1, \beta = 0 $ under the control (3)

  • [1] H. ChenY. Xie and G. Xu, Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.  doi: 10.1080/00207179.2018.1444283.
    [2] H.-Y. CuiZ.-J. Han and G.-Q. Xu, Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.  doi: 10.1080/00036811.2015.1047830.
    [3] H. CuiD. Liu and G. Xu, Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.  doi: 10.3934/mcrf.2018015.
    [4] R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.
    [5] R. Datko, Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.  doi: 10.1109/9.186332.
    [6] R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.
    [7] X. FengG. Xu and Y. Chen, Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.  doi: 10.1080/00207179.2017.1286693.
    [8] I. Gumowski and  S. MiraOptimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968. 
    [9] B.-Z. Guo and K.-Y. Yang, Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.  doi: 10.1109/TAC.2010.2042363.
    [10] Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020). doi: 10.1007/s11424-020-9294-6.
    [11] J.-J. Liu and J.-M. Wang, Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.  doi: 10.1007/s10883-013-9189-0.
    [12] E. Machtygier and E. Zuazua, Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256. 
    [13] S. Nicaise and S.-E. Rebiai, Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.  doi: 10.4171/PM/1879.
    [14] S. Nicaise and J. Valein, Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.  doi: 10.1051/cocv/2009007.
    [15] S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.  doi: 10.1007/s00498-014-0130-1.
    [16] Y. F. Shang and G. Q. Xu, The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.  doi: 10.1093/imamci/dnq026.
    [17] Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.  doi: 10.1016/j.sysconle.2012.07.012.
    [18] Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.  doi: 10.1016/j.jmaa.2014.09.013.
    [19] Y. F. ShangG. Q. Xu and X. Li, Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.  doi: 10.1093/imamci/dnu030.
    [20] K. Sriram and M. S. Gopinathan, A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.  doi: 10.1016/j.jtbi.2004.04.006.
    [21] J. Srividhya and M. S. Gopinathan, A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.  doi: 10.1016/j.jtbi.2005.12.020.
    [22] G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.
    [23] K.-Y. Yang and C.-Z. Yao, Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537. 
  • 加载中
Open Access Under a Creative Commons license

Figures(4)

SHARE

Article Metrics

HTML views(776) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return