doi: 10.3934/dcdsb.2021022

Uniform stabilization of 1-D Schrödinger equation with internal difference-type control

1. 

Department of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, China

2. 

School of Mathematics, Tianjin University, Tianjin, 300354, China

3. 

School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

* Corresponding author: Xiaorui Wang

Received  April 2020 Revised  November 2020 Published  January 2021

Fund Project: This project is partially supported by the National Natural Science Foundation in China (NSFC 61773277), and partially supported by NSF of Qinghai Province (2017-ZJ-908)

In this paper, we consider the stabilization problem of 1-D Schrödinger equation with internal difference-type control. Different from the other existing approaches of controller design, we introduce a new approach of controller design so called the parameterization controller. At first, we rewrite the system with internal difference-type control as a cascaded system of a transport equation and Schödinger equation; Further, to stabilize the system under consideration, we construct a target system that has exponential stability. By selecting the solution of nonlocal and singular initial value problem as parameter function and defining a bounded linear transformation, we show that the transformation maps the closed-loop system to the target system; Finally, we prove that the transformation is bounded inverse. Hence the closed-loop system is equivalent to the target system.

Citation: Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021022
References:
[1]

H. ChenY. Xie and G. Xu, Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.  doi: 10.1080/00207179.2018.1444283.  Google Scholar

[2]

H.-Y. CuiZ.-J. Han and G.-Q. Xu, Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.  doi: 10.1080/00036811.2015.1047830.  Google Scholar

[3]

H. CuiD. Liu and G. Xu, Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.  doi: 10.3934/mcrf.2018015.  Google Scholar

[4]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[5]

R. Datko, Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.  doi: 10.1109/9.186332.  Google Scholar

[6]

R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.  Google Scholar

[7]

X. FengG. Xu and Y. Chen, Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.  doi: 10.1080/00207179.2017.1286693.  Google Scholar

[8] I. Gumowski and S. Mira, Optimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968.   Google Scholar
[9]

B.-Z. Guo and K.-Y. Yang, Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.  doi: 10.1109/TAC.2010.2042363.  Google Scholar

[10]

Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020). doi: 10.1007/s11424-020-9294-6.  Google Scholar

[11]

J.-J. Liu and J.-M. Wang, Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.  doi: 10.1007/s10883-013-9189-0.  Google Scholar

[12]

E. Machtygier and E. Zuazua, Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256.   Google Scholar

[13]

S. Nicaise and S.-E. Rebiai, Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.  doi: 10.4171/PM/1879.  Google Scholar

[14]

S. Nicaise and J. Valein, Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.  doi: 10.1051/cocv/2009007.  Google Scholar

[15]

S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.  doi: 10.1007/s00498-014-0130-1.  Google Scholar

[16]

Y. F. Shang and G. Q. Xu, The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.  doi: 10.1093/imamci/dnq026.  Google Scholar

[17]

Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.  doi: 10.1016/j.sysconle.2012.07.012.  Google Scholar

[18]

Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.  doi: 10.1016/j.jmaa.2014.09.013.  Google Scholar

[19]

Y. F. ShangG. Q. Xu and X. Li, Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.  doi: 10.1093/imamci/dnu030.  Google Scholar

[20]

K. Sriram and M. S. Gopinathan, A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.  doi: 10.1016/j.jtbi.2004.04.006.  Google Scholar

[21]

J. Srividhya and M. S. Gopinathan, A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.  doi: 10.1016/j.jtbi.2005.12.020.  Google Scholar

[22]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[23]

K.-Y. Yang and C.-Z. Yao, Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537.   Google Scholar

show all references

References:
[1]

H. ChenY. Xie and G. Xu, Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.  doi: 10.1080/00207179.2018.1444283.  Google Scholar

[2]

H.-Y. CuiZ.-J. Han and G.-Q. Xu, Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.  doi: 10.1080/00036811.2015.1047830.  Google Scholar

[3]

H. CuiD. Liu and G. Xu, Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.  doi: 10.3934/mcrf.2018015.  Google Scholar

[4]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[5]

R. Datko, Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.  doi: 10.1109/9.186332.  Google Scholar

[6]

R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.  Google Scholar

[7]

X. FengG. Xu and Y. Chen, Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.  doi: 10.1080/00207179.2017.1286693.  Google Scholar

[8] I. Gumowski and S. Mira, Optimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968.   Google Scholar
[9]

B.-Z. Guo and K.-Y. Yang, Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.  doi: 10.1109/TAC.2010.2042363.  Google Scholar

[10]

Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020). doi: 10.1007/s11424-020-9294-6.  Google Scholar

[11]

J.-J. Liu and J.-M. Wang, Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.  doi: 10.1007/s10883-013-9189-0.  Google Scholar

[12]

E. Machtygier and E. Zuazua, Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256.   Google Scholar

[13]

S. Nicaise and S.-E. Rebiai, Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.  doi: 10.4171/PM/1879.  Google Scholar

[14]

S. Nicaise and J. Valein, Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.  doi: 10.1051/cocv/2009007.  Google Scholar

[15]

S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.  doi: 10.1007/s00498-014-0130-1.  Google Scholar

[16]

Y. F. Shang and G. Q. Xu, The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.  doi: 10.1093/imamci/dnq026.  Google Scholar

[17]

Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.  doi: 10.1016/j.sysconle.2012.07.012.  Google Scholar

[18]

Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.  doi: 10.1016/j.jmaa.2014.09.013.  Google Scholar

[19]

Y. F. ShangG. Q. Xu and X. Li, Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.  doi: 10.1093/imamci/dnu030.  Google Scholar

[20]

K. Sriram and M. S. Gopinathan, A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.  doi: 10.1016/j.jtbi.2004.04.006.  Google Scholar

[21]

J. Srividhya and M. S. Gopinathan, A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.  doi: 10.1016/j.jtbi.2005.12.020.  Google Scholar

[22]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[23]

K.-Y. Yang and C.-Z. Yao, Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537.   Google Scholar

Figure 1.  The dynamic behaviour of system (1) for $ \alpha = \beta = 0 $
Figure 2.  The dynamic behaviour of system (1) for $ \alpha = 1, \beta = 0 $ under $ U(t) = -kw(x,t) $
Figure 3.  The dynamic behaviour of system (1) for $ \alpha = 2, \beta = 1 $ under $ U(t) = -kw(x,t) $
Figure 4.  The dynamic behaviour of system (1) for $ \alpha = 1, \beta = 0 $ under the control (3)
[1]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[4]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[5]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[6]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[7]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[8]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[9]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[10]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[11]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[12]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[13]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[14]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[15]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[16]

Lei Qiao. Matsaev's type theorems for solutions of the stationary Schrödinger equation and its applications. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5709-5720. doi: 10.3934/dcds.2016050

[17]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[18]

Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919

[19]

Ahmet Batal, Türker Özsarı, Kemal Cem Yılmaz. Stabilization of higher order Schrödinger equations on a finite interval: Part I. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020095

[20]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (181)
  • Cited by (0)

Other articles
by authors

[Back to Top]