In this paper, we consider the stabilization problem of 1-D Schrödinger equation with internal difference-type control. Different from the other existing approaches of controller design, we introduce a new approach of controller design so called the parameterization controller. At first, we rewrite the system with internal difference-type control as a cascaded system of a transport equation and Schödinger equation; Further, to stabilize the system under consideration, we construct a target system that has exponential stability. By selecting the solution of nonlocal and singular initial value problem as parameter function and defining a bounded linear transformation, we show that the transformation maps the closed-loop system to the target system; Finally, we prove that the transformation is bounded inverse. Hence the closed-loop system is equivalent to the target system.
Citation: |
[1] |
H. Chen, Y. Xie and G. Xu, Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.
doi: 10.1080/00207179.2018.1444283.![]() ![]() ![]() |
[2] |
H.-Y. Cui, Z.-J. Han and G.-Q. Xu, Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.
doi: 10.1080/00036811.2015.1047830.![]() ![]() ![]() |
[3] |
H. Cui, D. Liu and G. Xu, Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.
doi: 10.3934/mcrf.2018015.![]() ![]() ![]() |
[4] |
R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.
doi: 10.1137/0324007.![]() ![]() ![]() |
[5] |
R. Datko, Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.
doi: 10.1109/9.186332.![]() ![]() ![]() |
[6] |
R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.
doi: 10.1109/9.566660.![]() ![]() ![]() |
[7] |
X. Feng, G. Xu and Y. Chen, Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.
doi: 10.1080/00207179.2017.1286693.![]() ![]() ![]() |
[8] |
I. Gumowski and S. Mira, Optimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968.
![]() |
[9] |
B.-Z. Guo and K.-Y. Yang, Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.
doi: 10.1109/TAC.2010.2042363.![]() ![]() ![]() |
[10] |
Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020).
doi: 10.1007/s11424-020-9294-6.![]() ![]() |
[11] |
J.-J. Liu and J.-M. Wang, Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.
doi: 10.1007/s10883-013-9189-0.![]() ![]() ![]() |
[12] |
E. Machtygier and E. Zuazua, Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256.
![]() ![]() |
[13] |
S. Nicaise and S.-E. Rebiai, Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.
doi: 10.4171/PM/1879.![]() ![]() ![]() |
[14] |
S. Nicaise and J. Valein, Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.
doi: 10.1051/cocv/2009007.![]() ![]() ![]() |
[15] |
S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.
doi: 10.1007/s00498-014-0130-1.![]() ![]() ![]() |
[16] |
Y. F. Shang and G. Q. Xu, The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.
doi: 10.1093/imamci/dnq026.![]() ![]() ![]() |
[17] |
Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.
doi: 10.1016/j.sysconle.2012.07.012.![]() ![]() ![]() |
[18] |
Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.
doi: 10.1016/j.jmaa.2014.09.013.![]() ![]() ![]() |
[19] |
Y. F. Shang, G. Q. Xu and X. Li, Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.
doi: 10.1093/imamci/dnu030.![]() ![]() ![]() |
[20] |
K. Sriram and M. S. Gopinathan, A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.
doi: 10.1016/j.jtbi.2004.04.006.![]() ![]() ![]() |
[21] |
J. Srividhya and M. S. Gopinathan, A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.
doi: 10.1016/j.jtbi.2005.12.020.![]() ![]() ![]() |
[22] |
G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.
doi: 10.1051/cocv:2006021.![]() ![]() ![]() |
[23] |
K.-Y. Yang and C.-Z. Yao, Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537.
![]() ![]() |
The dynamic behaviour of system (1) for
The dynamic behaviour of system (1) for
The dynamic behaviour of system (1) for
The dynamic behaviour of system (1) for