
-
Previous Article
Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions
- DCDS-B Home
- This Issue
-
Next Article
Qualitative analysis of a simple tumor-immune system with time delay of tumor action
Uniform stabilization of 1-D Schrödinger equation with internal difference-type control
1. | Department of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, China |
2. | School of Mathematics, Tianjin University, Tianjin, 300354, China |
3. | School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China |
In this paper, we consider the stabilization problem of 1-D Schrödinger equation with internal difference-type control. Different from the other existing approaches of controller design, we introduce a new approach of controller design so called the parameterization controller. At first, we rewrite the system with internal difference-type control as a cascaded system of a transport equation and Schödinger equation; Further, to stabilize the system under consideration, we construct a target system that has exponential stability. By selecting the solution of nonlocal and singular initial value problem as parameter function and defining a bounded linear transformation, we show that the transformation maps the closed-loop system to the target system; Finally, we prove that the transformation is bounded inverse. Hence the closed-loop system is equivalent to the target system.
References:
[1] |
H. Chen, Y. Xie and G. Xu,
Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.
doi: 10.1080/00207179.2018.1444283. |
[2] |
H.-Y. Cui, Z.-J. Han and G.-Q. Xu,
Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.
doi: 10.1080/00036811.2015.1047830. |
[3] |
H. Cui, D. Liu and G. Xu,
Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.
doi: 10.3934/mcrf.2018015. |
[4] |
R. Datko, J. Lagnese and M. P. Polis,
An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.
doi: 10.1137/0324007. |
[5] |
R. Datko,
Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.
doi: 10.1109/9.186332. |
[6] |
R. Datko,
Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.
doi: 10.1109/9.566660. |
[7] |
X. Feng, G. Xu and Y. Chen,
Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.
doi: 10.1080/00207179.2017.1286693. |
[8] | I. Gumowski and S. Mira, Optimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968. Google Scholar |
[9] |
B.-Z. Guo and K.-Y. Yang,
Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.
doi: 10.1109/TAC.2010.2042363. |
[10] |
Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020).
doi: 10.1007/s11424-020-9294-6. |
[11] |
J.-J. Liu and J.-M. Wang,
Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.
doi: 10.1007/s10883-013-9189-0. |
[12] |
E. Machtygier and E. Zuazua,
Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256.
|
[13] |
S. Nicaise and S.-E. Rebiai,
Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.
doi: 10.4171/PM/1879. |
[14] |
S. Nicaise and J. Valein,
Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.
doi: 10.1051/cocv/2009007. |
[15] |
S. Nicaise and C. Pignotti,
Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.
doi: 10.1007/s00498-014-0130-1. |
[16] |
Y. F. Shang and G. Q. Xu,
The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.
doi: 10.1093/imamci/dnq026. |
[17] |
Y. F. Shang and G. Q. Xu,
Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.
doi: 10.1016/j.sysconle.2012.07.012. |
[18] |
Y. F. Shang and G. Q. Xu,
Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.
doi: 10.1016/j.jmaa.2014.09.013. |
[19] |
Y. F. Shang, G. Q. Xu and X. Li,
Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.
doi: 10.1093/imamci/dnu030. |
[20] |
K. Sriram and M. S. Gopinathan,
A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.
doi: 10.1016/j.jtbi.2004.04.006. |
[21] |
J. Srividhya and M. S. Gopinathan,
A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.
doi: 10.1016/j.jtbi.2005.12.020. |
[22] |
G. Q. Xu, S. P. Yung and L. K. Li,
Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.
doi: 10.1051/cocv:2006021. |
[23] |
K.-Y. Yang and C.-Z. Yao,
Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537.
|
show all references
References:
[1] |
H. Chen, Y. Xie and G. Xu,
Rapid stabilization of multi-dimensional Schrödinger equation with the internal delay control, International Journal of Control, 92 (2019), 2521-2531.
doi: 10.1080/00207179.2018.1444283. |
[2] |
H.-Y. Cui, Z.-J. Han and G.-Q. Xu,
Stabilization for Schrödinger equation with a time delay in the boundary input, Applicable Analysis, 95 (2016), 963-977.
doi: 10.1080/00036811.2015.1047830. |
[3] |
H. Cui, D. Liu and G. Xu,
Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback, Mathematical Control and Related Fields, 8 (2018), 383-395.
doi: 10.3934/mcrf.2018015. |
[4] |
R. Datko, J. Lagnese and M. P. Polis,
An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM J. Control Optim., 24 (1986), 152-156.
doi: 10.1137/0324007. |
[5] |
R. Datko,
Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Autom. Control, 38 (1993), 163-166.
doi: 10.1109/9.186332. |
[6] |
R. Datko,
Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Autom. Control, 42 (1997), 511-515.
doi: 10.1109/9.566660. |
[7] |
X. Feng, G. Xu and Y. Chen,
Rapid stabilization of an Euler-Bernoulli beam with the internal delay control, International Journal of Control, 92 (2019), 42-55.
doi: 10.1080/00207179.2017.1286693. |
[8] | I. Gumowski and S. Mira, Optimization in Control Theory and Practice, Cambridge University Press, Cambridge, 1968. Google Scholar |
[9] |
B.-Z. Guo and K.-Y. Yang,
Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay, IEEE Trans. Autom. Control, 55 (2010), 1226-1232.
doi: 10.1109/TAC.2010.2042363. |
[10] |
Y. Li, H. Chen and Y. Xie, Stabilization with arbitrary convergence rate for the Schrödinger equation subjected to an input time delay, J. Syst. Sci. Complex, (2020).
doi: 10.1007/s11424-020-9294-6. |
[11] |
J.-J. Liu and J.-M. Wang,
Output-feedback stabilization of an anti-stable Schrödinger equation by boundary feedback with only displacement obeservation, J. Dyn. Control Syst., 19 (2013), 471-482.
doi: 10.1007/s10883-013-9189-0. |
[12] |
E. Machtygier and E. Zuazua,
Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256.
|
[13] |
S. Nicaise and S.-E. Rebiai,
Stability of the Schödinger equation with a delay term in the boundary or internal feedbacks, Portugaliae Mathematica, 68 (2011), 19-39.
doi: 10.4171/PM/1879. |
[14] |
S. Nicaise and J. Valein,
Stabilization of second-order evolution equations with time unbounded feedback with delay, ESAIM: Control Optim. Calc. Var., 16 (2010), 420-456.
doi: 10.1051/cocv/2009007. |
[15] |
S. Nicaise and C. Pignotti,
Stabilization of second-order evolution equations with time delay, Math Control Signals Syst., 26 (2014), 563-588.
doi: 10.1007/s00498-014-0130-1. |
[16] |
Y. F. Shang and G. Q. Xu,
The stability of a wave equation with delay-dependent position, IMA Journal of Mathematical Control and Information, 28 (2011), 75-95.
doi: 10.1093/imamci/dnq026. |
[17] |
Y. F. Shang and G. Q. Xu,
Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.
doi: 10.1016/j.sysconle.2012.07.012. |
[18] |
Y. F. Shang and G. Q. Xu,
Dynamic feedback control and exponential stabilization of a compound system, J. Math Anal. Appl., 442 (2015), 858-879.
doi: 10.1016/j.jmaa.2014.09.013. |
[19] |
Y. F. Shang, G. Q. Xu and X. Li,
Output-based stabilization for a one-dimensional wave equation with distributed input delay in the boundary control, IMA Journal of Mathematical Control and Information, 33 (2016), 95-119.
doi: 10.1093/imamci/dnu030. |
[20] |
K. Sriram and M. S. Gopinathan,
A two variable delay modle for the circadian rhythm of Neurospora crassa, J. Theor. Biol., 231 (2004), 23-38.
doi: 10.1016/j.jtbi.2004.04.006. |
[21] |
J. Srividhya and M. S. Gopinathan,
A simple time delay model for eukaryotic cell cycle, J. Theor. Biol., 241 (2006), 617-627.
doi: 10.1016/j.jtbi.2005.12.020. |
[22] |
G. Q. Xu, S. P. Yung and L. K. Li,
Stabilization of wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785.
doi: 10.1051/cocv:2006021. |
[23] |
K.-Y. Yang and C.-Z. Yao,
Stabilization of one-dimensional Schrödinger equation with variable coefficient under delayed boundary output, Asian. J. Control., 15 (2013), 1531-1537.
|




[1] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
[2] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[3] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[4] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[5] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[6] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[7] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[8] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[9] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[10] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[11] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[12] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[13] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[14] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[15] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[16] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[17] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[18] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[19] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[20] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]