doi: 10.3934/dcdsb.2021023

Global attractors of two layer baroclinic quasi-geostrophic model

School of Mathematics, Lanzou City University, Lanzhou, 730070, China

Received  July 2020 Early access  January 2021

Fund Project: The work was supported in part by the National Science Foundation of China under Grant 11761044

We study the dynamics of a two-layer baroclinic quasi-geostrophic model. We prove that the semigroup $ \{S(t)\}_{t\geq 0} $ associated with the solutions of the model has a global attractor in both $ {{\dot H}_{p}}^1(\Omega) $ and $ {{\dot H}_{p}}^2(\Omega) $. Also we show that for any viscosity $ \mu>0 $, there is an open and dense set of forcing $ \mathcal G\subset{{\dot H}_{p}}^0(\Omega) $ such that for each $ G = (g_1, g_2)\in \mathcal G $, the set $ S(G, \mu) \subset {{\dot H}_{p}}^4(\Omega) $ of the steady state problem is non–empty and finite.

Citation: Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021023
References:
[1]

M. Cai, A analytic study of the baroclinic adjustment in a quasigeostrophic two-layer channel model, Journal of the Atmospheric Sciences, 49 (1992), 1594-1605.  doi: 10.1175/1520-0469(1992)049<1594:AASOTB>2.0.CO;2.  Google Scholar

[2]

M. Hernandez, K. W. Ong and S. Wang, Baroclinic instability and transitions in a quasi-geostrophic two-layer channel model, arXiv preprint. Google Scholar

[3]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[4]

T. Ma and S. Wang, Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, Volume 119 of Mathematical Surveys and Monographs, Providence, RI: American Mathematical Society, 2005. doi: 10.1090/surv/119.  Google Scholar

[5]

M. Mak, Equilibration in nonlinear Baroclinic instability, J. Atomspheric Sciences, 42 (1985), 2764-2782.  doi: 10.1175/1520-0469(1985)042<2764:EINBI>2.0.CO;2.  Google Scholar

[6]

J. Pedlosky, Finite-amplitude baroclinic waves, J. Atomspheric Sciences, 27 (1970), 15-30.  doi: 10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2.  Google Scholar

[7]

S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math., 87 (1965), 861–866. doi: 10.2307/2373250.  Google Scholar

[8]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

show all references

References:
[1]

M. Cai, A analytic study of the baroclinic adjustment in a quasigeostrophic two-layer channel model, Journal of the Atmospheric Sciences, 49 (1992), 1594-1605.  doi: 10.1175/1520-0469(1992)049<1594:AASOTB>2.0.CO;2.  Google Scholar

[2]

M. Hernandez, K. W. Ong and S. Wang, Baroclinic instability and transitions in a quasi-geostrophic two-layer channel model, arXiv preprint. Google Scholar

[3]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[4]

T. Ma and S. Wang, Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, Volume 119 of Mathematical Surveys and Monographs, Providence, RI: American Mathematical Society, 2005. doi: 10.1090/surv/119.  Google Scholar

[5]

M. Mak, Equilibration in nonlinear Baroclinic instability, J. Atomspheric Sciences, 42 (1985), 2764-2782.  doi: 10.1175/1520-0469(1985)042<2764:EINBI>2.0.CO;2.  Google Scholar

[6]

J. Pedlosky, Finite-amplitude baroclinic waves, J. Atomspheric Sciences, 27 (1970), 15-30.  doi: 10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2.  Google Scholar

[7]

S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math., 87 (1965), 861–866. doi: 10.2307/2373250.  Google Scholar

[8]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[1]

May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179

[2]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[3]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[4]

Colin Cotter, Dan Crisan, Darryl Holm, Wei Pan, Igor Shevchenko. Modelling uncertainty using stochastic transport noise in a 2-layer quasi-geostrophic model. Foundations of Data Science, 2020, 2 (2) : 173-205. doi: 10.3934/fods.2020010

[5]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[6]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[7]

Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023

[8]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336

[10]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[11]

Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

[12]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[13]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete & Continuous Dynamical Systems, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[14]

T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119

[15]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[16]

Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293

[17]

Tongtong Liang, Yejuan Wang. Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4697-4726. doi: 10.3934/dcdsb.2020309

[18]

Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173

[19]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[20]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (51)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]