doi: 10.3934/dcdsb.2021023
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global attractors of two layer baroclinic quasi-geostrophic model

School of Mathematics, Lanzou City University, Lanzhou, 730070, China

Received  July 2020 Early access January 2021

Fund Project: The work was supported in part by the National Science Foundation of China under Grant 11761044

We study the dynamics of a two-layer baroclinic quasi-geostrophic model. We prove that the semigroup $ \{S(t)\}_{t\geq 0} $ associated with the solutions of the model has a global attractor in both $ {{\dot H}_{p}}^1(\Omega) $ and $ {{\dot H}_{p}}^2(\Omega) $. Also we show that for any viscosity $ \mu>0 $, there is an open and dense set of forcing $ \mathcal G\subset{{\dot H}_{p}}^0(\Omega) $ such that for each $ G = (g_1, g_2)\in \mathcal G $, the set $ S(G, \mu) \subset {{\dot H}_{p}}^4(\Omega) $ of the steady state problem is non–empty and finite.

Citation: Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021023
References:
[1]

M. Cai, A analytic study of the baroclinic adjustment in a quasigeostrophic two-layer channel model, Journal of the Atmospheric Sciences, 49 (1992), 1594-1605.  doi: 10.1175/1520-0469(1992)049<1594:AASOTB>2.0.CO;2.  Google Scholar

[2]

M. Hernandez, K. W. Ong and S. Wang, Baroclinic instability and transitions in a quasi-geostrophic two-layer channel model, arXiv preprint. Google Scholar

[3]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[4]

T. Ma and S. Wang, Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, Volume 119 of Mathematical Surveys and Monographs, Providence, RI: American Mathematical Society, 2005. doi: 10.1090/surv/119.  Google Scholar

[5]

M. Mak, Equilibration in nonlinear Baroclinic instability, J. Atomspheric Sciences, 42 (1985), 2764-2782.  doi: 10.1175/1520-0469(1985)042<2764:EINBI>2.0.CO;2.  Google Scholar

[6]

J. Pedlosky, Finite-amplitude baroclinic waves, J. Atomspheric Sciences, 27 (1970), 15-30.  doi: 10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2.  Google Scholar

[7]

S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math., 87 (1965), 861–866. doi: 10.2307/2373250.  Google Scholar

[8]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

show all references

References:
[1]

M. Cai, A analytic study of the baroclinic adjustment in a quasigeostrophic two-layer channel model, Journal of the Atmospheric Sciences, 49 (1992), 1594-1605.  doi: 10.1175/1520-0469(1992)049<1594:AASOTB>2.0.CO;2.  Google Scholar

[2]

M. Hernandez, K. W. Ong and S. Wang, Baroclinic instability and transitions in a quasi-geostrophic two-layer channel model, arXiv preprint. Google Scholar

[3]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[4]

T. Ma and S. Wang, Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, Volume 119 of Mathematical Surveys and Monographs, Providence, RI: American Mathematical Society, 2005. doi: 10.1090/surv/119.  Google Scholar

[5]

M. Mak, Equilibration in nonlinear Baroclinic instability, J. Atomspheric Sciences, 42 (1985), 2764-2782.  doi: 10.1175/1520-0469(1985)042<2764:EINBI>2.0.CO;2.  Google Scholar

[6]

J. Pedlosky, Finite-amplitude baroclinic waves, J. Atomspheric Sciences, 27 (1970), 15-30.  doi: 10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2.  Google Scholar

[7]

S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math., 87 (1965), 861–866. doi: 10.2307/2373250.  Google Scholar

[8]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[1]

May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure &amp; Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179

[2]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[3]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[4]

Colin Cotter, Dan Crisan, Darryl Holm, Wei Pan, Igor Shevchenko. Modelling uncertainty using stochastic transport noise in a 2-layer quasi-geostrophic model. Foundations of Data Science, 2020, 2 (2) : 173-205. doi: 10.3934/fods.2020010

[5]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[6]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[7]

Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023

[8]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure &amp; Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336

[10]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[11]

Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

[12]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[13]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete & Continuous Dynamical Systems, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[14]

T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure &amp; Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119

[15]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[16]

Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293

[17]

Tongtong Liang, Yejuan Wang. Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4697-4726. doi: 10.3934/dcdsb.2020309

[18]

Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173

[19]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[20]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

2020 Impact Factor: 1.327

Article outline

[Back to Top]