doi: 10.3934/dcdsb.2021024

On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions

1. 

School of Mathematics and Statistics, Xidian University, Xi'an, 710126, China

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

* Corresponding author: fli@xidian.edu.cn (F. Li), youb2013@xjtu.edu.cn(B. You)

Received  July 2020 Revised  December 2020 Published  January 2021

The objective of this paper is to study the fractal dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Inspired by the idea of the $ \ell $-trajectory method, we prove the existence of a finite dimensional global attractor in an auxiliary normed space for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions and estimate the fractal dimension of the global attractor in the original phase space for this system by defining a Lipschitz mapping from the auxiliary normed space into the original phase space.

Citation: Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021024
References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, Journal of Differential Equations, 83 (1990), 85-108. doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations and estimates of their dimension, Russian Mathematical Surveys, 38 (1983), 133-187.  Google Scholar

[3]

F. Balibrea and J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the non-differentiable case, Comptes Rendus de l Academie des Sciences-I: Mathematics, 325 (1997). 759-764. doi: 10.1016/S0764-4442(97)80056-0.  Google Scholar

[4]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Communications in Mathematical Sciences, 13 (2015), 1541-1567. doi: 10.4310/CMS.2015.v13.n6.a9.  Google Scholar

[5]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbulence and Combustion volume, 1 (1949), 27-36. doi: 10.1007/BF02120313.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Analysis, 44 (2001), 811-819. doi: 10.1016/S0362-546X(99)00309-0.  Google Scholar

[8]

R. Chill, E. Fasangova and J. Pruss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Mathematische Nachrichten, 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[9]

C. Collins, J. Shen and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Communications in Computational Physics, 13 (2013), 929-957. doi: 10.4208/cicp.171211.130412a.  Google Scholar

[10]

A. E. Diegel, X. H. Feng and S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM Journal on Numerical Analysis, 53 (2015), 127-152. doi: 10.1137/130950628.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics, Providence, RI: Masson, 1994.  Google Scholar

[12]

M. Efendiev and A. Miranville, The dimension of the global attractor for dissipative reaction-diffusion systems, Applied Mathematics Letters, 16 (2003), 351-355. doi: 10.1016/S0893-9659(03)80056-3.  Google Scholar

[13]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci. Paris, 330 (2000). 713-718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Analysis, 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[15]

C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electronic Journal of Differential Equations, 2006 (2006), 1-23.  Google Scholar

[16]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Advances in Differential Equations, 12 (2007), 1241-1274.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, Journal of Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

M. Grasselli, D. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, Journal of Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete and Continuous Dynamical Systems, 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

O. A. Ladyzhenskaya, On the determination of minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspekhi Matematicheskikh Nauk, 42 (1987), 25-60.  Google Scholar

[21]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, Journal de Mathématiques Pures et Appliquées, 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[22]

F. Li, C. K. Zhong and B. You, Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system, Journal of Mathematical Analysis and Applications, 434 (2016), 599-616. doi: 10.1016/j.jmaa.2015.09.026.  Google Scholar

[23]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, Journal of Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[24]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, Journal of Differential Equations, 127 (1996), 498-518. doi: 10.1006/jdeq.1996.0080.  Google Scholar

[25]

J. Málek and D. Pražák, Finite fractal dimension of the global attractor for a class of non-newtonian fluids, Applied Mathematics Letters, 13 (2000), 105-110. doi: 10.1016/S0893-9659(99)00152-4.  Google Scholar

[26]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamical boundary conditions, Mathematical Models and Methods in Applied Sciences, 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[28]

W. Ngamsaad, J. Yojina and W. Triampo, Theoretical studies of phase-separation kinetics in a Brinkman porous medium, Journal of Physics A: Mathematical and Theoretical, 43 (2010), 202001(7pp). Google Scholar

[29]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, Journal of Dynamics and Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088.  Google Scholar

[30]

D. Pražák, On the dimension of the attractor for the wave equation with nonlinear damping, Communications on Pure and Applied Analysis, 4 (2005), 165-174. doi: 10.3934/cpaa.2005.4.165.  Google Scholar

[31]

J. Pruss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Annali di Matematica Pura ed Applicata, 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.  Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic Partial Differential Equations and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[33]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[34]

J. Simon, Compact sets in the space $l^p(0, t;b)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[35]

R. Temam, Infinite-dimensional Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[36]

B. You and F. Li, Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Dynamics of Partial Differential Equations, 13 (2016), 75-90. doi: 10.4310/DPDE.2016.v13.n1.a4.  Google Scholar

[37]

B. You and C. K. Zhong, Global attractors for $p$-laplacian equations with dynamic flux boundary conditions, Advanced Nonlinear Studies, 13 (2013), 391-410. doi: 10.1515/ans-2013-0208.  Google Scholar

show all references

References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, Journal of Differential Equations, 83 (1990), 85-108. doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations and estimates of their dimension, Russian Mathematical Surveys, 38 (1983), 133-187.  Google Scholar

[3]

F. Balibrea and J. Valero, Estimates of dimension of attractors of reaction-diffusion equations in the non-differentiable case, Comptes Rendus de l Academie des Sciences-I: Mathematics, 325 (1997). 759-764. doi: 10.1016/S0764-4442(97)80056-0.  Google Scholar

[4]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Communications in Mathematical Sciences, 13 (2015), 1541-1567. doi: 10.4310/CMS.2015.v13.n6.a9.  Google Scholar

[5]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbulence and Combustion volume, 1 (1949), 27-36. doi: 10.1007/BF02120313.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.  Google Scholar

[7]

V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Analysis, 44 (2001), 811-819. doi: 10.1016/S0362-546X(99)00309-0.  Google Scholar

[8]

R. Chill, E. Fasangova and J. Pruss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Mathematische Nachrichten, 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[9]

C. Collins, J. Shen and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Communications in Computational Physics, 13 (2013), 929-957. doi: 10.4208/cicp.171211.130412a.  Google Scholar

[10]

A. E. Diegel, X. H. Feng and S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM Journal on Numerical Analysis, 53 (2015), 127-152. doi: 10.1137/130950628.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics, Providence, RI: Masson, 1994.  Google Scholar

[12]

M. Efendiev and A. Miranville, The dimension of the global attractor for dissipative reaction-diffusion systems, Applied Mathematics Letters, 16 (2003), 351-355. doi: 10.1016/S0893-9659(03)80056-3.  Google Scholar

[13]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Math. Acad. Sci. Paris, 330 (2000). 713-718. doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[14]

Z. H. Fan and C. K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Analysis, 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.  Google Scholar

[15]

C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls, Electronic Journal of Differential Equations, 2006 (2006), 1-23.  Google Scholar

[16]

C. G. Gal, Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Advances in Differential Equations, 12 (2007), 1241-1274.  Google Scholar

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, Journal of Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.  Google Scholar

[18]

M. Grasselli, D. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, Journal of Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the three dimensional viscous primitive equations, Discrete and Continuous Dynamical Systems, 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

O. A. Ladyzhenskaya, On the determination of minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspekhi Matematicheskikh Nauk, 42 (1987), 25-60.  Google Scholar

[21]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, Journal de Mathématiques Pures et Appliquées, 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.  Google Scholar

[22]

F. Li, C. K. Zhong and B. You, Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system, Journal of Mathematical Analysis and Applications, 434 (2016), 599-616. doi: 10.1016/j.jmaa.2015.09.026.  Google Scholar

[23]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, Journal of Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[24]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids, Journal of Differential Equations, 127 (1996), 498-518. doi: 10.1006/jdeq.1996.0080.  Google Scholar

[25]

J. Málek and D. Pražák, Finite fractal dimension of the global attractor for a class of non-newtonian fluids, Applied Mathematics Letters, 13 (2000), 105-110. doi: 10.1016/S0893-9659(99)00152-4.  Google Scholar

[26]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087.  Google Scholar

[27]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamical boundary conditions, Mathematical Models and Methods in Applied Sciences, 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[28]

W. Ngamsaad, J. Yojina and W. Triampo, Theoretical studies of phase-separation kinetics in a Brinkman porous medium, Journal of Physics A: Mathematical and Theoretical, 43 (2010), 202001(7pp). Google Scholar

[29]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, Journal of Dynamics and Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088.  Google Scholar

[30]

D. Pražák, On the dimension of the attractor for the wave equation with nonlinear damping, Communications on Pure and Applied Analysis, 4 (2005), 165-174. doi: 10.3934/cpaa.2005.4.165.  Google Scholar

[31]

J. Pruss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Annali di Matematica Pura ed Applicata, 185 (2006), 627-648. doi: 10.1007/s10231-005-0175-3.  Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic Partial Differential Equations and the Theory of Global Attractors, Cambridge University Press, 2001.  Google Scholar

[33]

R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Analysis, 32 (1998), 71-85. doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[34]

J. Simon, Compact sets in the space $l^p(0, t;b)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[35]

R. Temam, Infinite-dimensional Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[36]

B. You and F. Li, Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Dynamics of Partial Differential Equations, 13 (2016), 75-90. doi: 10.4310/DPDE.2016.v13.n1.a4.  Google Scholar

[37]

B. You and C. K. Zhong, Global attractors for $p$-laplacian equations with dynamic flux boundary conditions, Advanced Nonlinear Studies, 13 (2013), 391-410. doi: 10.1515/ans-2013-0208.  Google Scholar

[1]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[2]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[7]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[8]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[9]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[14]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[15]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[16]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[17]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[18]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[19]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[20]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (11)
  • HTML views (17)
  • Cited by (0)

Other articles
by authors

[Back to Top]