• Previous Article
    Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises
  • DCDS-B Home
  • This Issue
  • Next Article
    Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment
doi: 10.3934/dcdsb.2021027

Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response

1. 

Department of Mathematics, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 300, Taiwan

2. 

School of Mathematical Sciences, Ocean University of China, No. 238 Songling Road, Laoshan District, Qingdao, Shandong Province, China

* Corresponding author: Zhengyang Zhang

Dedicated to Prof. Sze-Bi Hsu in acknowledgement of his helpful suggestions

Received  July 2020 Revised  December 2020 Published  January 2021

In this paper we study the spruce-budworm interaction model with Holling's type II functional response. The existence, number and stability of equilibria are studied. Moreover, we prove the existence of relaxation oscillations by using singular perturbation method and give an asymptotic expression of the period of relaxation oscillations. Finally, the parameter ranges which allow the relaxation oscillations in several scenarios are explored and displayed by conducting numerical simulations.

Citation: Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021027
References:
[1]

D. LudwigD. D. Jones and C. S. Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, J. Anim. Ecol., 47(1) (1978), 315-332.   Google Scholar

[2] E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Mathematical Concepts and Methods in Science and Engineering, 13. Plenum Press, New York, 1980.  doi: 10.1007/978-1-4615-9047-7.  Google Scholar
[3]

J. Murray, Mathematical Biology, 2$^{nd}$ edition, Springer Verlag, Berlin Heidelberg, 1993. doi: 10.1007/978-3-662-08542-4.  Google Scholar

[4]

A. RasmussenJ. Wyller and J. O. Vik, Relaxation oscillations in spruce-budworm interactions, Nonlinear Anal. Real World Appl., 12 (2011), 304-319.  doi: 10.1016/j.nonrwa.2010.06.017.  Google Scholar

[5]

T. Royama, Population dynamics of the spruce budworm Choristoneura Fumiferana, Ecol. Monogr., 54 (1984), 429-462.  doi: 10.2307/1942595.  Google Scholar

[6]

T. Royama, Analytical Population Dynamics, Springer, Dordrecht, 1992. doi: 10.1007/978-94-011-2916-9.  Google Scholar

[7]

T. RoyamaW. E. MacKinnonE. G. KettelaN. E. Carter and L. K. Hartling, Analysis of spruce budworm outbreak cycles in New Brunswick, Canada, since 1952, Ecology, 86 (2005), 1212-1224.  doi: 10.1890/03-4077.  Google Scholar

[8]

N. Kh. Rozov, Asymptotic calculation of nearly discontinuous solutions of a second-order system of differential equations, Dokl. Akad. Nauk SSSR, 145 (1962), 38-40.   Google Scholar

[9]

N. Wang and M. Han, Slow-fast dynamics of Hopfield spruce-budworm model with memory effects, Adv. Differ. Equ., 2016 (2016), Paper No. 73, 12 pp. doi: 10.1186/s13662-016-0804-8.  Google Scholar

[10]

M. I. ZharovE. F. Mishchenko and N. Kh. Rozov, Some special functions and constants that arise in the theory of relaxation oscillations (Russian), Dokl. Akad. Nauk SSSR, 261 (1981), 1292-1296.   Google Scholar

show all references

References:
[1]

D. LudwigD. D. Jones and C. S. Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, J. Anim. Ecol., 47(1) (1978), 315-332.   Google Scholar

[2] E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Mathematical Concepts and Methods in Science and Engineering, 13. Plenum Press, New York, 1980.  doi: 10.1007/978-1-4615-9047-7.  Google Scholar
[3]

J. Murray, Mathematical Biology, 2$^{nd}$ edition, Springer Verlag, Berlin Heidelberg, 1993. doi: 10.1007/978-3-662-08542-4.  Google Scholar

[4]

A. RasmussenJ. Wyller and J. O. Vik, Relaxation oscillations in spruce-budworm interactions, Nonlinear Anal. Real World Appl., 12 (2011), 304-319.  doi: 10.1016/j.nonrwa.2010.06.017.  Google Scholar

[5]

T. Royama, Population dynamics of the spruce budworm Choristoneura Fumiferana, Ecol. Monogr., 54 (1984), 429-462.  doi: 10.2307/1942595.  Google Scholar

[6]

T. Royama, Analytical Population Dynamics, Springer, Dordrecht, 1992. doi: 10.1007/978-94-011-2916-9.  Google Scholar

[7]

T. RoyamaW. E. MacKinnonE. G. KettelaN. E. Carter and L. K. Hartling, Analysis of spruce budworm outbreak cycles in New Brunswick, Canada, since 1952, Ecology, 86 (2005), 1212-1224.  doi: 10.1890/03-4077.  Google Scholar

[8]

N. Kh. Rozov, Asymptotic calculation of nearly discontinuous solutions of a second-order system of differential equations, Dokl. Akad. Nauk SSSR, 145 (1962), 38-40.   Google Scholar

[9]

N. Wang and M. Han, Slow-fast dynamics of Hopfield spruce-budworm model with memory effects, Adv. Differ. Equ., 2016 (2016), Paper No. 73, 12 pp. doi: 10.1186/s13662-016-0804-8.  Google Scholar

[10]

M. I. ZharovE. F. Mishchenko and N. Kh. Rozov, Some special functions and constants that arise in the theory of relaxation oscillations (Russian), Dokl. Akad. Nauk SSSR, 261 (1981), 1292-1296.   Google Scholar

Figure 1.  In this figure we show the nullclines when $ \alpha ^2\geqslant 1/27 $. In this case there exists exactly one positive equilibrium. Other parameters are $ \varepsilon = 0.001 $, $ \varrho = 5 $, $ Y_{max} = 20 $, $ A = 1 $
Figure 2.  In this figure we show the nullclines when $ \alpha ^{2} = 0.0013\in (0,1/27) $ and the system of equations (5)-(6) has one positive solution. In this case there exists one positive equilibrium. Other parameters are: $ \varepsilon = 0.001 $, $ \varrho = 5 $, $ Y_{\max } = 20 $, $ A = 1 $
Figure 3.  In this figure we show three possible situations producing only one equilibrium in the strip $ \mathcal{S} $ when $ \alpha ^{2} = 0.0013\in (0,1/27) $. Other parameters are: $ \varepsilon = 0.001 $, $ \varrho = 5 $ and $ Y_{\max } = 10 $, $ A = 1 $ for (a), $ Y_{\max } = 20 $, $ A = 1 $ for (b), $ Y_{\max } = 55 $, $ A = 10 $ for (c)
Figure 4.  In this figure the stability of the quasi-steady state is shown (the tilde over $ X $ and $ Y $ is neglected here for a better look). The lower and higher branch (the blue part) of the quasi-steady state are uniformly asymptotically stable, while the intermediate branch (the pink part between $ X_{1} $ and $ X_{2} $) is unstable. The arrows indicate the domains of attraction of the stable branches. The pink curve segments $ \Gamma_{1}^{*} $, $ \Gamma_{2}^{*} $ and $ \Gamma_{3}^{*} $ indicate the common boundary between the attraction domains of the lower and higher branch (see Remark 3.3 in the following)
Figure 5.  In this figure we show the construction of the closed orbit. The point $ (X_{1}+\delta ,Y_{1}),\ \delta >0 $ is attracted to the higher stable branch of the quasi-steady state, while the point $ (X_{2}-\delta ,Y_{2}),\ \delta >0 $ is attracted to the lower stable branch (indicated in (a)). As $ \delta\rightarrow 0 $, a closed orbit emerges, which represents the relaxation oscillations (indicated in (b))
Figure 6.  In this figure we show the decomposition of the orbit in the calculation of the period of relaxation oscillation
Figure 7.  In this figure we show how we compute the period of relaxation oscillation from numerical simulations of the original system (2). The period is estimated by the difference of time between two maximal (or minimal) points. The parameters are: $ \alpha ^{2} = 0.0013 $, $ \varepsilon = 0.001 $, $ \varrho = 5 $, $ Y_{\max } = 20 $, $ A = 1 $
Figure 8.  In Figure (a) we plot the budworm abundance (the lower curve) and the leaf area abundance (the upper curve) during one oscillation period. In Figure (b) we plot the budworm abundance against leaf area abundance on the phase plane. The closed orbit is displayed in (b). The period is divided into 20 equidistant time intervals indicated by rings. The parameters are: $ \alpha ^{2} = 0.0013 $, $ \varepsilon = 0.001 $, $ \varrho = 5 $, $ Y_{\max } = 20 $, $ A = 1 $
Figure 9.  In this figure we show the numerically estimated period $ T_{num} $ as a function of $ \varepsilon $. $ T_{num} $ converges to $ T_{0} $ as $ \varepsilon\rightarrow 0 $. The parameters are: $ \alpha ^{2} = 0.0013 $, $ \varrho = 5 $, $ Y_{\max } = 20 $, $ A = 1 $
Figure 10.  In this figure we show the variation of the relaxation oscillations with common initial condition $ X(0) = 0.2 $, $ Y(0) = 8 $ and different $ \varepsilon $ values: 0.001, 0.0028, 0.0046, 0.0064, 0.0082 and 0.01. In Figure (a) the evolutions of the budworm and leaf area in time are displayed, while in Figure (b) the corresponding closed orbits in the phase plane are displayed. Notice that the period of oscillation increases with $ \varepsilon $. The other parameters are: $ \alpha ^{2} = 0.0013 $, $ \varrho = 5 $, $ Y_{\max } = 20 $, $ A = 1 $
Figure 11.  In this figure we plot the variation of $ Y_{cri} $ with different values of $ A $. The other parameters are: $ \alpha ^{2} = 0.0013 $. When $ A = 0 $, $ Y_{cri} = 15.2333 $. When $ A\rightarrow\infty $, $ Y_{cri}\rightarrow 18.2349 $
Figure 12.  In this figure we plot the nullclines such that the graph of the function $ X = \Theta (Y;\varrho ,Y_{\max },A) $ passes through the points $ (X_{1},Y_{1}) $ and $ (X_{2},Y_{2}) $. Five values of $ A $ are selected: $ A = $0, 1, 5, 20,500. The other parameters are: $ \alpha ^{2} = 0.0013 $
Figure 13.  In this figure we plot parameter $ \varrho $ versus parameter $ A $ for $ Y_{\max } = 16 $. The red line represents all the parameter pair $ (A,\varrho ) $ such that the nullclines intersect at $ (X_{1},Y_{1}) $. The green line represents all the parameter pair $ (A,\varrho ) $ such that the nullclines intersect at $ (X_{2},Y_{2}) $. Relaxation oscillations are possible when the parameter pair $ (A,\varrho ) $ takes values in the two triangular regions between the two straight lines
Figure 14.  In figure (a) we plot parameter $ \varrho $ versus parameter $ A $ for $ Y_{\max } = 20 $. The upper line represents all the parameter pair $ (A,\varrho ) $ such that the nullclines intersect at $ (X_{1},Y_{1}) $. The lower line represents all the parameter pair $ (A,\varrho ) $ such that the nullclines intersect at $ (X_{2},Y_{2}) $. Relaxation oscillations are possible when the parameter pair $ (A,\varrho ) $ takes values in the quadrilateral region between the two straight lines. In figure (b) we plot the asymptotic period $ T_{0} $ of relaxation oscillations as a function of $ \varrho $ for $ A = 0 $, corresponding to the pink part in (a)
Figure 15.  In this figure we plot parameter $ \varrho $ versus parameter $ A $ for $ Y_{\max } = 20,30,40,100 $. The representations of upper lines and lower lines are the same as in Figure 14-(a)
Figure 16.  In this figure we plot the asymptotic period $ T_{0} $ of relaxation oscillations as a function of $ \varrho $ when $ A = 0 $ and $ Y_{\max } = 20,30,40,100 $, corresponding to the colored part on the $ \varrho $-axis in Figure 15
Figure 17.  In this figure we plot parameter $ \varrho $ versus parameter $ A $ for $ Y_{\max } = 20 $. The representations of upper lines and lower lines are the same as in Figure 14-(a). The colored vertical straight line segments indicate the possible $ \varrho $ values for exhibiting relaxation oscillations for different $ A $ value
Figure 18.  In this figure we plot the asymptotic period $ T_{0} $ of relaxation oscillations as a function of $ \varrho $ when $ A = 0,1,5,10 $ and $ Y_{\max } = 20 $, corresponding to the colored vertical straight line segments in Figure 17
Figure 19.  In this figure we plot the asymptotic period $ T_{0} $ of relaxation oscillations as a function of $ A $ when $ \varrho = 2,4,6,10,20 $ and $ Y_{\max } = 20 $
Table 1.  The biological interpretations of the variables and parameters of model (1)
Variable/parameter Biological interpretation
$ t $ Time
$ N $ Population density of the larvae
$ S $ Average leaf area of the spruce
$ r $ Intrinsic growth rate of budworm population
$ \rho $ Intrinsic growth rate of spruce leaf area
$ \kappa $ Coefficient measuring to which degree the leaves
can accommodate the larvae
$ S_{\max } $ Carrying capacity of spruce leaf area
$ \beta $ Maximum consumption rate of budworms
per budworm-predator per time
$ P $ Budworm population density at maximal predation pressure
$ \eta $ Regulating coefficient of the predation pressure
$ \delta $ Maximal rate of budworm predation pressure
as spruce leaf area increases
$ K $ Spruce leaf area at half of the maximal predation pressure
Variable/parameter Biological interpretation
$ t $ Time
$ N $ Population density of the larvae
$ S $ Average leaf area of the spruce
$ r $ Intrinsic growth rate of budworm population
$ \rho $ Intrinsic growth rate of spruce leaf area
$ \kappa $ Coefficient measuring to which degree the leaves
can accommodate the larvae
$ S_{\max } $ Carrying capacity of spruce leaf area
$ \beta $ Maximum consumption rate of budworms
per budworm-predator per time
$ P $ Budworm population density at maximal predation pressure
$ \eta $ Regulating coefficient of the predation pressure
$ \delta $ Maximal rate of budworm predation pressure
as spruce leaf area increases
$ K $ Spruce leaf area at half of the maximal predation pressure
[1]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[6]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[7]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[10]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[11]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[12]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[13]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[14]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[15]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[16]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[19]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222

[20]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (8)
  • HTML views (17)
  • Cited by (0)

Other articles
by authors

[Back to Top]