\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling wave solutions of a free boundary problem with latent heat effect

  • * Corresponding author: Chueh-Hsin Chang

    * Corresponding author: Chueh-Hsin Chang 
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We study a free boundary problem of two competing species with latent heat effect. We establish the existence and uniqueness of the traveling wave solution and derive upper and lower bounds for the wave speed. Especially our results show that the latent heat retards propagation of the waves.

    Mathematics Subject Classification: 35K57, 35C07, 35R35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The intersection between $ y = \lambda c $ and $ y = g(c) $, and the zeros of $ g(c) = 0 $ under three cases: Figure (a): $ g(0)>0 $, $ 0<c_{ \lambda }<c_{0}<c_{min,u} $. Figure (b): $ g(0) = 0 $, $ c_{\lambda } = c_{0} = 0 $, Figure (c): $ g(0)<0 $, $ c_{min,v}<c_{0}<c_{\lambda }<0 $

  • [1] C.-H. Chang and C.-C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model, Communications on Pure and Applied Analysis, 12 (2013), 1065-1074.  doi: 10.3934/cpaa.2013.12.1065.
    [2] C.-N. ChenC.-C. Chen and C.-C. Huang, Traveling waves for the FitzHugh-Nagumo system on an infinite channel, Journal of Differential Equations, 261 (2016), 3010-3041.  doi: 10.1016/j.jde.2016.05.014.
    [3] E. N. DancerD. HilhorstM. Mimura and L. A. Peletier, Spatial segregation limit of a competition–diffusion system, European J. Appl. Math., 10 (1999), 97-115.  doi: 10.1017/S0956792598003660.
    [4] Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 45 (2013), 1995-1996.  doi: 10.1137/090771089.
    [5] Y. DuM. X. Wang and M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math.Pures Appl., 107 (2017), 253-287.  doi: 10.1016/j.matpur.2016.06.005.
    [6] Y. Du and C. H. Wu, Spreading with two speeds and mass segregation in a diffusive competition system with free boundaries, Calc.Var. Partial Differential Equations, 57 (2018), Art. 52, 36pp. doi: 10.1007/s00526-018-1339-5.
    [7] M. El-Hachem, S. W. McCue and M. J. Simpson, A sharp-front moving boundary model for malignant invasion, Physica D, 412 (2020), Article 132639, 11pp. doi: 10.1016/j.physd.2020.132639.
    [8] S. Heinze, A Variational Approach to Traveling Waves, Technical Report 85, Max Planck Institute for Mathematical Sciences, 2001
    [9] D. HilhorstM. IidaM. Mimura and H. Ninomiya, A competition–diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.  doi: 10.1007/BF03168569.
    [10] D. HilhorstM. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003), 261-285.  doi: 10.1016/S1468-1218(02)00009-3.
    [11] A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equations de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Bull. Univ. Moscou S'er. Internat., A1 (1937), 1–26. English transl. in Dynamics of Curved Fronts, P. Pelc'e (ed.), Academic Press, 1988,105–130.
    [12] M. LuciaC. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium, Comm. Pure Appl. Math., 57 (2004), 616-636.  doi: 10.1002/cpa.20014.
    [13] M. LuciaC. B. Muratov and M. Novaga, Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders, Arch. Ration. Mech. Anal., 188 (2008), 475-508.  doi: 10.1007/s00205-007-0097-x.
    [14] M. MimuraY. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186.  doi: 10.1007/BF03167042.
    [15] M. MimuraY. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.  doi: 10.32917/hmj/1206130304.
    [16] M. MimuraY. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.  doi: 10.32917/hmj/1206130066.
    [17] L. I. Rubinstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971.
    [18] A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140, Amer. Math. Soc., Providence, 1994. doi: 10.1090/mmono/140.
    [19] J. Yang, Asymptotic behavior of solutions for competitive models with a free boundary, Discrete Contin. Dyn. Syst., 35 (2015), 3253-3276.  doi: 10.3934/dcds.2015.35.3253.
    [20] J. Yang, Traveling wave solutions of a time-periodic competitive system with a free boundary, J. Differential Equations, 265 (2018), 963-978.  doi: 10.1016/j.jde.2018.03.020.
    [21] J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817-826.  doi: 10.3934/dcdsb.2014.19.817.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(477) PDF downloads(364) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return