
-
Previous Article
Optimal control of leachate recirculation for anaerobic processes in landfills
- DCDS-B Home
- This Issue
-
Next Article
An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment
Dynamics of a vector-host model under switching environments
1. | Department of Mathematics, The University of Alabama, Tuscaloosa, Alabama 35487-0350, USA |
2. | Faculty of Basic Sciences, Ho Chi Minh University of Transport, 2 Vo Oanh, Ho Chi Minh, Vietnam |
In this paper, the stochastic vector-host model has been proposed and analysed using nice properties of piecewise deterministic Markov processes (PDMPs). A threshold for the stochastic model is derived whose sign determines whether the disease will eventually disappear or persist. We show mathematically the existence of scenarios where switching plays a significant role in surprisingly reversing the long-term properties of deterministic systems.
References:
[1] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[2] |
Y. Asai, X. Han and P. E. Kloeden, Dynamics of Zika virus epidemic in random environment, in Mathematics Applied to Engineering, Modelling, and Social Issues, Springer, 2019,665–684. |
[3] |
K. Bao, L. Rong and Q. Zhang, Analysis of a stochastic sirs model with interval parameters, Discrete & Continuous Dynamical Systems-B, 24 (2019), 4827.
doi: 10.3934/dcdsb.2019033. |
[4] |
M. Benaim, Stochastic persistence, preprint, arXiv: 1806.08450. Google Scholar |
[5] |
M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Annales de l'IHP Probabilités et Statistiques, 51 (2015), 1040–1075.
doi: 10.1214/14-AIHP619. |
[6] |
M. Benaïm, E. Strickler, et al., Random switching between vector fields having a common zero, The Annals of Applied Probability, 29 (2019), 326-375.
doi: 10.1214/18-AAP1418. |
[7] |
D. Bichara, Effects of migration on vector-borne diseases with forward and backward stage progression, preprint, arXiv: 1810.06777.
doi: 10.3934/dcdsb.2019140. |
[8] |
Z. Cao, X. Liu, X. Wen, L. Liu and L. Zu,
A regime-switching sir epidemic model with a ratio-dependent incidence rate and degenerate diffusion, Scientific Reports, 9 (2019), 1-7.
doi: 10.1186/s13662-017-1355-3. |
[9] |
M. H. Davis,
Piecewise-deterministic markov processes: A general class of non-diffusion stochastic models, Journal of the Royal Statistical Society: Series B (Methodological), 46 (1984), 353-376.
doi: 10.1111/j.2517-6161.1984.tb01308.x. |
[10] |
N. H. Du and D. H. Nguyen,
Dynamics of kolmogorov systems of competitive type under the telegraph noise, Journal of Differential Equations, 250 (2011), 386-409.
doi: 10.1016/j.jde.2010.08.023. |
[11] |
Y. Dumont and F. Chiroleu, Vector control for the Chikungunya disease, Mathematical Biosciences & Engineering, 7 (2010), 313.
doi: 10.3934/mbe.2010.7.313. |
[12] |
A. Gray, D. Greenhalgh, X. Mao and J. Pan,
The sis epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.
doi: 10.1016/j.jmaa.2012.05.029. |
[13] |
Q. He and G. Yin,
Large deviations for multi-scale markovian switching systems with a small diffusion, Asymptotic Analysis, 87 (2014), 123-145.
doi: 10.3233/ASY-131198. |
[14] |
A. Hening, D. H. Nguyen, et al., Coexistence and extinction for stochastic kolmogorov systems, Annals of Applied Probability, 28 (2018), 1893–1942.
doi: 10.1214/17-AAP1347. |
[15] |
H. W. Hethcote and P. Van den Driessche,
Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[16] |
N. Hieu, N. Du, P. Auger and D. H. Nguyen,
Dynamical behavior of a stochastic sirs epidemic model, Mathematical Modelling of Natural Phenomena, 10 (2015), 56-73.
doi: 10.1051/mmnp/201510205. |
[17] |
J. Hui and L. Chen, Impulsive vaccination of sir epidemic models with nonlinear incidence rates, Discrete & Continuous Dynamical Systems-B, 4 (2004), 595.
doi: 10.3934/dcdsb.2004.4.595. |
[18] |
M. Jacobsen, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes, Springer Science & Business Media, 2006. |
[19] |
M. Liu, X. He and J. Yu,
Dynamics of a stochastic regime-switching predator–prey model with harvesting and distributed delays, Nonlinear Analysis: Hybrid Systems, 28 (2018), 87-104.
doi: 10.1016/j.nahs.2017.10.004. |
[20] |
Q. Lu,
Stability of sirs system with random perturbations, Physica A: Statistical Mechanics and Its Applications, 388 (2009), 3677-3686.
doi: 10.1016/j.physa.2009.05.036. |
[21] |
Q. Luo and X. Mao,
Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and Applications, 334 (2007), 69-84.
doi: 10.1016/j.jmaa.2006.12.032. |
[22] |
P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector-borne neglected tropical diseases, PLoS Negl. Trop. Dis., 4 (2010), e761.
doi: 10.1371/journal.pntd.0000761. |
[23] |
X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial college press, 2006.
doi: 10.1142/p473.![]() ![]() |
[24] |
R. M. May and R. M. Anderson,
Population biology of infectious diseases: Part Ⅱ, Nature, 280 (1979), 455-461.
doi: 10.1038/280455a0. |
[25] |
A. Mishra, B. Ambrosio, S. Gakkhar and M. Aziz-Alaoui, A network model for control of dengue epidemic using sterile insect technique., Math. Biosci. Eng., 15 (2018), 441-460. Google Scholar |
[26] |
A. Mishra and S. Gakkhar,
The effects of awareness and vector control on two strains dengue dynamics, Applied Mathematics and Computation, 246 (2014), 159-167.
doi: 10.1016/j.amc.2014.07.115. |
[27] |
A. Mishra and S. Gakkhar, Non-linear dynamics of two-patch model incorporating secondary dengue infection, International Journal of Applied and Computational Mathematics, 4 (2018), 19.
doi: 10.1007/s40819-017-0460-z. |
[28] |
D. H. Nguyen and G. Yin,
Coexistence and exclusion of stochastic competitive Lotka–Volterra models, Journal of Differential Equations, 262 (2017), 1192-1225.
doi: 10.1016/j.jde.2016.10.005. |
[29] |
W. H. Organization, et al., Global Strategic Framework for Integrated Vector Management, Technical report, World Health Organization, 2004. Google Scholar |
[30] |
Y. Shen, Mathematical models of dengue fever and measures to control it, Ph.D thesis, Florida State University in Tallahassee, 2014. Google Scholar |
[31] |
C. Sun, W. Yang, J. Arino and K. Khan,
Effect of media-induced social distancing on disease transmission in a two patch setting, Mathematical Biosciences, 230 (2011), 87-95.
doi: 10.1016/j.mbs.2011.01.005. |
[32] |
H. Yang, H. Wei and X. Li,
Global stability of an epidemic model for vector-borne disease, Journal of Systems Science and Complexity, 23 (2010), 279-292.
doi: 10.1007/s11424-010-8436-7. |
show all references
References:
[1] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[2] |
Y. Asai, X. Han and P. E. Kloeden, Dynamics of Zika virus epidemic in random environment, in Mathematics Applied to Engineering, Modelling, and Social Issues, Springer, 2019,665–684. |
[3] |
K. Bao, L. Rong and Q. Zhang, Analysis of a stochastic sirs model with interval parameters, Discrete & Continuous Dynamical Systems-B, 24 (2019), 4827.
doi: 10.3934/dcdsb.2019033. |
[4] |
M. Benaim, Stochastic persistence, preprint, arXiv: 1806.08450. Google Scholar |
[5] |
M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Annales de l'IHP Probabilités et Statistiques, 51 (2015), 1040–1075.
doi: 10.1214/14-AIHP619. |
[6] |
M. Benaïm, E. Strickler, et al., Random switching between vector fields having a common zero, The Annals of Applied Probability, 29 (2019), 326-375.
doi: 10.1214/18-AAP1418. |
[7] |
D. Bichara, Effects of migration on vector-borne diseases with forward and backward stage progression, preprint, arXiv: 1810.06777.
doi: 10.3934/dcdsb.2019140. |
[8] |
Z. Cao, X. Liu, X. Wen, L. Liu and L. Zu,
A regime-switching sir epidemic model with a ratio-dependent incidence rate and degenerate diffusion, Scientific Reports, 9 (2019), 1-7.
doi: 10.1186/s13662-017-1355-3. |
[9] |
M. H. Davis,
Piecewise-deterministic markov processes: A general class of non-diffusion stochastic models, Journal of the Royal Statistical Society: Series B (Methodological), 46 (1984), 353-376.
doi: 10.1111/j.2517-6161.1984.tb01308.x. |
[10] |
N. H. Du and D. H. Nguyen,
Dynamics of kolmogorov systems of competitive type under the telegraph noise, Journal of Differential Equations, 250 (2011), 386-409.
doi: 10.1016/j.jde.2010.08.023. |
[11] |
Y. Dumont and F. Chiroleu, Vector control for the Chikungunya disease, Mathematical Biosciences & Engineering, 7 (2010), 313.
doi: 10.3934/mbe.2010.7.313. |
[12] |
A. Gray, D. Greenhalgh, X. Mao and J. Pan,
The sis epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.
doi: 10.1016/j.jmaa.2012.05.029. |
[13] |
Q. He and G. Yin,
Large deviations for multi-scale markovian switching systems with a small diffusion, Asymptotic Analysis, 87 (2014), 123-145.
doi: 10.3233/ASY-131198. |
[14] |
A. Hening, D. H. Nguyen, et al., Coexistence and extinction for stochastic kolmogorov systems, Annals of Applied Probability, 28 (2018), 1893–1942.
doi: 10.1214/17-AAP1347. |
[15] |
H. W. Hethcote and P. Van den Driessche,
Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[16] |
N. Hieu, N. Du, P. Auger and D. H. Nguyen,
Dynamical behavior of a stochastic sirs epidemic model, Mathematical Modelling of Natural Phenomena, 10 (2015), 56-73.
doi: 10.1051/mmnp/201510205. |
[17] |
J. Hui and L. Chen, Impulsive vaccination of sir epidemic models with nonlinear incidence rates, Discrete & Continuous Dynamical Systems-B, 4 (2004), 595.
doi: 10.3934/dcdsb.2004.4.595. |
[18] |
M. Jacobsen, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes, Springer Science & Business Media, 2006. |
[19] |
M. Liu, X. He and J. Yu,
Dynamics of a stochastic regime-switching predator–prey model with harvesting and distributed delays, Nonlinear Analysis: Hybrid Systems, 28 (2018), 87-104.
doi: 10.1016/j.nahs.2017.10.004. |
[20] |
Q. Lu,
Stability of sirs system with random perturbations, Physica A: Statistical Mechanics and Its Applications, 388 (2009), 3677-3686.
doi: 10.1016/j.physa.2009.05.036. |
[21] |
Q. Luo and X. Mao,
Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and Applications, 334 (2007), 69-84.
doi: 10.1016/j.jmaa.2006.12.032. |
[22] |
P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector-borne neglected tropical diseases, PLoS Negl. Trop. Dis., 4 (2010), e761.
doi: 10.1371/journal.pntd.0000761. |
[23] |
X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial college press, 2006.
doi: 10.1142/p473.![]() ![]() |
[24] |
R. M. May and R. M. Anderson,
Population biology of infectious diseases: Part Ⅱ, Nature, 280 (1979), 455-461.
doi: 10.1038/280455a0. |
[25] |
A. Mishra, B. Ambrosio, S. Gakkhar and M. Aziz-Alaoui, A network model for control of dengue epidemic using sterile insect technique., Math. Biosci. Eng., 15 (2018), 441-460. Google Scholar |
[26] |
A. Mishra and S. Gakkhar,
The effects of awareness and vector control on two strains dengue dynamics, Applied Mathematics and Computation, 246 (2014), 159-167.
doi: 10.1016/j.amc.2014.07.115. |
[27] |
A. Mishra and S. Gakkhar, Non-linear dynamics of two-patch model incorporating secondary dengue infection, International Journal of Applied and Computational Mathematics, 4 (2018), 19.
doi: 10.1007/s40819-017-0460-z. |
[28] |
D. H. Nguyen and G. Yin,
Coexistence and exclusion of stochastic competitive Lotka–Volterra models, Journal of Differential Equations, 262 (2017), 1192-1225.
doi: 10.1016/j.jde.2016.10.005. |
[29] |
W. H. Organization, et al., Global Strategic Framework for Integrated Vector Management, Technical report, World Health Organization, 2004. Google Scholar |
[30] |
Y. Shen, Mathematical models of dengue fever and measures to control it, Ph.D thesis, Florida State University in Tallahassee, 2014. Google Scholar |
[31] |
C. Sun, W. Yang, J. Arino and K. Khan,
Effect of media-induced social distancing on disease transmission in a two patch setting, Mathematical Biosciences, 230 (2011), 87-95.
doi: 10.1016/j.mbs.2011.01.005. |
[32] |
H. Yang, H. Wei and X. Li,
Global stability of an epidemic model for vector-borne disease, Journal of Systems Science and Complexity, 23 (2010), 279-292.
doi: 10.1007/s11424-010-8436-7. |




[1] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[2] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[3] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[4] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[5] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[6] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[7] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[8] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[9] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[10] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[11] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[12] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[13] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[14] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[15] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[16] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[17] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[18] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[19] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[20] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]