[1]
|
B. Andrade and A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131-1175.
doi: 10.1007/s00208-016-1469-z.
|
[2]
|
B. Andrade and A. Viana, Integrodifferential equations with applications to a plate equation with memory, Mathematische Nachrichten, 289 (17–18), 2159-2172.
doi: 10.1002/mana.201500205.
|
[3]
|
B. Andrade, A. N. Carvalho, P. M. Carvalho-Neto and P. Marin-Rubio, Semilinear fractional differential equations: Global solutions, critical nonlinearities and comparison results, Topological Methods in Nonlinear Analysis, 45 (2015), 439-467.
doi: 10.12775/TMNA.2015.022.
|
[4]
|
K. Balachandran and J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integro-differential equations in Banach spaces, Nonlinear Anal., 72 (2010), 4587-4593.
doi: 10.1016/j.na.2010.02.035.
|
[5]
|
M. Bonforte, Y. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.
doi: 10.3934/dcds.2015.35.5725.
|
[6]
|
L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.
doi: 10.1016/j.anihpc.2015.01.004.
|
[7]
|
T. Caraballo and J. Real, Attractors for 2D-Navier–Stokes models with delays, J. Differ. Equ., 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012.
|
[8]
|
T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166.
|
[9]
|
Y. Chen, H. Gao, M. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 79-98.
doi: 10.3934/dcds.2014.34.79.
|
[10]
|
B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199-208.
doi: 10.1007/BF01596912.
|
[11]
|
B. D. Coleman and V. J. Mizel, Norms and semigroups in the theory of fading memory, Arch. Rational Mech. Anal., 28 (1966), 87-123.
doi: 10.1007/BF00251727.
|
[12]
|
M. Conti, E. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.
doi: 10.1016/j.na.2013.08.015.
|
[13]
|
M. Conti, F. Dell'Oro and V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, Communications on Pure and Applied Analysis, 19 (2020).
doi: 10.3934/cpaa.2020090.
|
[14]
|
M. Conti, E. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.
doi: 10.1090/S0002-9947-2013-06097-7.
|
[15]
|
M. D'Abbico, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal, 95 (2014), 130-145.
doi: 10.1016/j.na.2013.09.006.
|
[16]
|
M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory, Asymp. Anal., 81 (2002), 1245-1264.
doi: 10.1080/0003681021000035588.
|
[17]
|
H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.
doi: 10.1016/j.cnsns.2016.05.021.
|
[18]
|
M. L. Heard and S. M. Rankin III, A semilinear parabolic Volterra integro-differential equation, J. Differential Equations, 71 (1988), 201-233.
doi: 10.1016/0022-0396(88)90023-X.
|
[19]
|
V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics, 301, Longman, Harlow, 1994.
doi: 978-0582219779.
|
[20]
|
L. Li and G. J. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 50 (2018), 2867-2900.
doi: 10.1137/17M1160318.
|
[21]
|
A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.
doi: 10.1137/0521066.
|
[22]
|
R. C. MacCamy, An integro-differential equation with application in heat flow, Quart. Appl. Math., 35 (1977), 1-19.
doi: 10.1090/qam/452184.
|
[23]
|
F. Mainardi, A. Mura and G. Pagnini, The $M$-Wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equ., (2010), 104505, 29 pp.
doi: 10.1155/2010/104505.
|
[24]
|
L. Peng, A. Debbouche and Y. Zhou, Existence and approximation of solutions for time-fractional Navier-stokes equations, Math. Methods Appl. Sci., 41 (2018), 8973-8984.
doi: 10.1002/mma.4779.
|
[25]
|
I. Podlubny, Fractional Differential Equations, Academic press, California, 1999.
doi: 10.1016/978-0-12-558840-9.
|
[26]
|
M. H. M. Rashid and Y. E. Qaderi, Semilinear fractional integro-differential equations with compact semigroup, Nonlinear Anal., 71 (2009), 6276-6282.
doi: 10.1016/j.na.2009.06.035.
|
[27]
|
M. H. M. Rashid and A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semi-linear integro-differential equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3493-3503.
doi: 10.1016/j.cnsns.2010.12.043.
|
[28]
|
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058.
|
[29]
|
J. V. C. Sousa, F. G. Rodrigues and E. C. Oliveira, Stability of the fractional Volterra integro-differential equation by means of $\psi$-Hilfer operator, Math. Methods Appl. Sci., 42 (2019), 3033-3043.
doi: 10.1002/mma.5563.
|
[30]
|
H. G. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231.
doi: 10.1515/fca-2020-0012.
|
[31]
|
A. Viana, Local well-posedness for a Lotka-Volterra system in Besov spaces, Comput. Math. Appl., 69 (2015), 667-674.
doi: 10.1016/j.camwa.2015.02.013.
|
[32]
|
A. Viana, A local theory for a fractional reaction-diffusion equation, Commun. Contemp. Math, 21 (2019), 1850033, 26 pp.
doi: 10.1142/S0219199718500335.
|
[33]
|
G. Webb, An abstract semilinear Volterra integro-differential equation, Proc. Amer. Math. Soc., 69 (1978), 255-260.
doi: 10.1090/S0002-9939-1978-0467214-4.
|
[34]
|
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Different. Equ., 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.
|
[35]
|
Y. Zhou, J. Manimaran, L. Shangerganesh and A. Debbouche, Weakness and Mittag-Leffler stability of solutions for time-fractional Keller-Segel models, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 753-761.
doi: 10.1515/ijnsns-2018-0035.
|