doi: 10.3934/dcdsb.2021030

Initial value problem for fractional Volterra integro-differential equations with Caputo derivative

1. 

Department of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam

2. 

Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. 

Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088, China

4. 

Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China

5. 

Faculty of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China

* Corresponding author: Huu Can Nguyen (nguyenhuucan@tdtu.edu.vn)

Dedicated to Tomás Caraballo on his 60th birthday.

Received  April 2020 Revised  December 2020 Published  February 2021

In this paper, we consider the time-fractional Volterra integro-differential equations with Caputo derivative. For globally Lispchitz source term, we investigate the global existence for a mild solution. The main tool is to apply the Banach fixed point theorem on some new weighted spaces combining some techniques on the Wright functions. For the locally Lipschitz case, we study the existence of local mild solutions to the problem and provide a blow-up alternative for mild solutions. We also establish the problem of continuous dependence with respect to initial data. Finally, we present some examples to illustrate the theoretical results.

Citation: Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021030
References:
[1]

B. Andrade and A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131-1175.  doi: 10.1007/s00208-016-1469-z.  Google Scholar

[2]

B. Andrade and A. Viana, Integrodifferential equations with applications to a plate equation with memory, Mathematische Nachrichten, 289 (17–18), 2159-2172.  doi: 10.1002/mana.201500205.  Google Scholar

[3]

B. AndradeA. N. CarvalhoP. M. Carvalho-Neto and P. Marin-Rubio, Semilinear fractional differential equations: Global solutions, critical nonlinearities and comparison results, Topological Methods in Nonlinear Analysis, 45 (2015), 439-467.  doi: 10.12775/TMNA.2015.022.  Google Scholar

[4]

K. Balachandran and J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integro-differential equations in Banach spaces, Nonlinear Anal., 72 (2010), 4587-4593.  doi: 10.1016/j.na.2010.02.035.  Google Scholar

[5]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[6]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.  Google Scholar

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier–Stokes models with delays, J. Differ. Equ., 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[8]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[9]

Y. ChenH. GaoM. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[10]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199-208.  doi: 10.1007/BF01596912.  Google Scholar

[11]

B. D. Coleman and V. J. Mizel, Norms and semigroups in the theory of fading memory, Arch. Rational Mech. Anal., 28 (1966), 87-123.  doi: 10.1007/BF00251727.  Google Scholar

[12]

M. ContiE. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.  doi: 10.1016/j.na.2013.08.015.  Google Scholar

[13]

M. Conti, F. Dell'Oro and V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, Communications on Pure and Applied Analysis, 19 (2020). doi: 10.3934/cpaa.2020090.  Google Scholar

[14]

M. ContiE. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.  doi: 10.1090/S0002-9947-2013-06097-7.  Google Scholar

[15]

M. D'Abbico, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal, 95 (2014), 130-145.  doi: 10.1016/j.na.2013.09.006.  Google Scholar

[16]

M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory, Asymp. Anal., 81 (2002), 1245-1264.  doi: 10.1080/0003681021000035588.  Google Scholar

[17]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.  doi: 10.1016/j.cnsns.2016.05.021.  Google Scholar

[18]

M. L. Heard and S. M. Rankin III, A semilinear parabolic Volterra integro-differential equation, J. Differential Equations, 71 (1988), 201-233.  doi: 10.1016/0022-0396(88)90023-X.  Google Scholar

[19]

V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics, 301, Longman, Harlow, 1994. doi: 978-0582219779.  Google Scholar

[20]

L. Li and G. J. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 50 (2018), 2867-2900.  doi: 10.1137/17M1160318.  Google Scholar

[21]

A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.  doi: 10.1137/0521066.  Google Scholar

[22]

R. C. MacCamy, An integro-differential equation with application in heat flow, Quart. Appl. Math., 35 (1977), 1-19.  doi: 10.1090/qam/452184.  Google Scholar

[23]

F. Mainardi, A. Mura and G. Pagnini, The $M$-Wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equ., (2010), 104505, 29 pp. doi: 10.1155/2010/104505.  Google Scholar

[24]

L. PengA. Debbouche and Y. Zhou, Existence and approximation of solutions for time-fractional Navier-stokes equations, Math. Methods Appl. Sci., 41 (2018), 8973-8984.  doi: 10.1002/mma.4779.  Google Scholar

[25] I. Podlubny, Fractional Differential Equations, Academic press, California, 1999.  doi: 10.1016/978-0-12-558840-9.  Google Scholar
[26]

M. H. M. Rashid and Y. E. Qaderi, Semilinear fractional integro-differential equations with compact semigroup, Nonlinear Anal., 71 (2009), 6276-6282.  doi: 10.1016/j.na.2009.06.035.  Google Scholar

[27]

M. H. M. Rashid and A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semi-linear integro-differential equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3493-3503.  doi: 10.1016/j.cnsns.2010.12.043.  Google Scholar

[28]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[29]

J. V. C. SousaF. G. Rodrigues and E. C. Oliveira, Stability of the fractional Volterra integro-differential equation by means of $\psi$-Hilfer operator, Math. Methods Appl. Sci., 42 (2019), 3033-3043.  doi: 10.1002/mma.5563.  Google Scholar

[30]

H. G. SunY. ZhangD. BaleanuW. Chen and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231.  doi: 10.1515/fca-2020-0012.  Google Scholar

[31]

A. Viana, Local well-posedness for a Lotka-Volterra system in Besov spaces, Comput. Math. Appl., 69 (2015), 667-674.  doi: 10.1016/j.camwa.2015.02.013.  Google Scholar

[32]

A. Viana, A local theory for a fractional reaction-diffusion equation, Commun. Contemp. Math, 21 (2019), 1850033, 26 pp. doi: 10.1142/S0219199718500335.  Google Scholar

[33]

G. Webb, An abstract semilinear Volterra integro-differential equation, Proc. Amer. Math. Soc., 69 (1978), 255-260.  doi: 10.1090/S0002-9939-1978-0467214-4.  Google Scholar

[34]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Different. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[35]

Y. ZhouJ. ManimaranL. Shangerganesh and A. Debbouche, Weakness and Mittag-Leffler stability of solutions for time-fractional Keller-Segel models, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 753-761.  doi: 10.1515/ijnsns-2018-0035.  Google Scholar

show all references

References:
[1]

B. Andrade and A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131-1175.  doi: 10.1007/s00208-016-1469-z.  Google Scholar

[2]

B. Andrade and A. Viana, Integrodifferential equations with applications to a plate equation with memory, Mathematische Nachrichten, 289 (17–18), 2159-2172.  doi: 10.1002/mana.201500205.  Google Scholar

[3]

B. AndradeA. N. CarvalhoP. M. Carvalho-Neto and P. Marin-Rubio, Semilinear fractional differential equations: Global solutions, critical nonlinearities and comparison results, Topological Methods in Nonlinear Analysis, 45 (2015), 439-467.  doi: 10.12775/TMNA.2015.022.  Google Scholar

[4]

K. Balachandran and J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integro-differential equations in Banach spaces, Nonlinear Anal., 72 (2010), 4587-4593.  doi: 10.1016/j.na.2010.02.035.  Google Scholar

[5]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[6]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.  Google Scholar

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier–Stokes models with delays, J. Differ. Equ., 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[8]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[9]

Y. ChenH. GaoM. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[10]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199-208.  doi: 10.1007/BF01596912.  Google Scholar

[11]

B. D. Coleman and V. J. Mizel, Norms and semigroups in the theory of fading memory, Arch. Rational Mech. Anal., 28 (1966), 87-123.  doi: 10.1007/BF00251727.  Google Scholar

[12]

M. ContiE. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.  doi: 10.1016/j.na.2013.08.015.  Google Scholar

[13]

M. Conti, F. Dell'Oro and V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, Communications on Pure and Applied Analysis, 19 (2020). doi: 10.3934/cpaa.2020090.  Google Scholar

[14]

M. ContiE. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.  doi: 10.1090/S0002-9947-2013-06097-7.  Google Scholar

[15]

M. D'Abbico, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal, 95 (2014), 130-145.  doi: 10.1016/j.na.2013.09.006.  Google Scholar

[16]

M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory, Asymp. Anal., 81 (2002), 1245-1264.  doi: 10.1080/0003681021000035588.  Google Scholar

[17]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.  doi: 10.1016/j.cnsns.2016.05.021.  Google Scholar

[18]

M. L. Heard and S. M. Rankin III, A semilinear parabolic Volterra integro-differential equation, J. Differential Equations, 71 (1988), 201-233.  doi: 10.1016/0022-0396(88)90023-X.  Google Scholar

[19]

V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics, 301, Longman, Harlow, 1994. doi: 978-0582219779.  Google Scholar

[20]

L. Li and G. J. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 50 (2018), 2867-2900.  doi: 10.1137/17M1160318.  Google Scholar

[21]

A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224.  doi: 10.1137/0521066.  Google Scholar

[22]

R. C. MacCamy, An integro-differential equation with application in heat flow, Quart. Appl. Math., 35 (1977), 1-19.  doi: 10.1090/qam/452184.  Google Scholar

[23]

F. Mainardi, A. Mura and G. Pagnini, The $M$-Wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equ., (2010), 104505, 29 pp. doi: 10.1155/2010/104505.  Google Scholar

[24]

L. PengA. Debbouche and Y. Zhou, Existence and approximation of solutions for time-fractional Navier-stokes equations, Math. Methods Appl. Sci., 41 (2018), 8973-8984.  doi: 10.1002/mma.4779.  Google Scholar

[25] I. Podlubny, Fractional Differential Equations, Academic press, California, 1999.  doi: 10.1016/978-0-12-558840-9.  Google Scholar
[26]

M. H. M. Rashid and Y. E. Qaderi, Semilinear fractional integro-differential equations with compact semigroup, Nonlinear Anal., 71 (2009), 6276-6282.  doi: 10.1016/j.na.2009.06.035.  Google Scholar

[27]

M. H. M. Rashid and A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semi-linear integro-differential equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3493-3503.  doi: 10.1016/j.cnsns.2010.12.043.  Google Scholar

[28]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[29]

J. V. C. SousaF. G. Rodrigues and E. C. Oliveira, Stability of the fractional Volterra integro-differential equation by means of $\psi$-Hilfer operator, Math. Methods Appl. Sci., 42 (2019), 3033-3043.  doi: 10.1002/mma.5563.  Google Scholar

[30]

H. G. SunY. ZhangD. BaleanuW. Chen and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231.  doi: 10.1515/fca-2020-0012.  Google Scholar

[31]

A. Viana, Local well-posedness for a Lotka-Volterra system in Besov spaces, Comput. Math. Appl., 69 (2015), 667-674.  doi: 10.1016/j.camwa.2015.02.013.  Google Scholar

[32]

A. Viana, A local theory for a fractional reaction-diffusion equation, Commun. Contemp. Math, 21 (2019), 1850033, 26 pp. doi: 10.1142/S0219199718500335.  Google Scholar

[33]

G. Webb, An abstract semilinear Volterra integro-differential equation, Proc. Amer. Math. Soc., 69 (1978), 255-260.  doi: 10.1090/S0002-9939-1978-0467214-4.  Google Scholar

[34]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Different. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[35]

Y. ZhouJ. ManimaranL. Shangerganesh and A. Debbouche, Weakness and Mittag-Leffler stability of solutions for time-fractional Keller-Segel models, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 753-761.  doi: 10.1515/ijnsns-2018-0035.  Google Scholar

Figure 1.  Ex1. The solutions $ u(x,t) $ at $ t \in \{0.1, 0.5, 0.9\} $ for $ \alpha = 0.2 $ and $ \epsilon \in \{0.1, 0.01, 0.001\} $
Figure 2.  Ex1. The solutions $ u(x,t) $ on $ (x,t) \in (0,\pi) \times (0,1) $ for $ \alpha = 0.2 $ and $ \epsilon \in \{0.1, 0.01, 0.001\} $
Figure 3.  Ex2. The solutions $ u(x,t) $ at $ t \in \{0.1, 0.5, 0.9\} $ for $ \alpha = 0.9 $ and $ \epsilon \in \{0.1, 0.01, 0.001\} $
Figure 4.  Ex2. The solutions $ u(x,t) $ on $ (x,t) \in (0,\pi) \times (0,1) $ for $ \alpha = 0.9 $ and $ \epsilon \in \{0.1, 0.01, 0.001\} $
Table 1.  Ex1. The error estimation for $ \alpha = 0.2 $ and $ t \in \{0.1, 0.5, 0.9\} $
$ \epsilon = |\alpha^* - \alpha| $ $ N(j) = 10,\; P =10,\; M = N =50 $
Calculative error Percent error $ \delta^{ \alpha'}_ \alpha $
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.1) 0.1 0.011036875514009 15.46 %
0.01 0.004874547920700 6.83 %
0.001 0.002176754401323 3.05 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.5) 0.1 0.051353021961229 14.38 %
0.01 0.027169280169359 7.61 %
0.001 0.012084128051511 3.38 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.9) 0.1 0.074877070037197 11.65 %
0.01 0.042748723217464 6.65 %
0.001 0.028729381706881 4.47 %
$ \epsilon = |\alpha^* - \alpha| $ $ N(j) = 10,\; P =10,\; M = N =50 $
Calculative error Percent error $ \delta^{ \alpha'}_ \alpha $
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.1) 0.1 0.011036875514009 15.46 %
0.01 0.004874547920700 6.83 %
0.001 0.002176754401323 3.05 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.5) 0.1 0.051353021961229 14.38 %
0.01 0.027169280169359 7.61 %
0.001 0.012084128051511 3.38 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.9) 0.1 0.074877070037197 11.65 %
0.01 0.042748723217464 6.65 %
0.001 0.028729381706881 4.47 %
Table 2.  Ex2. The error estimation for $ \alpha = 0.9 $ and $ t \in \{0.1, 0.5, 0.9\} $
$ \epsilon = |\alpha^* - \alpha| $ $ N(j) = 10,\; P =10,\; M = N =50 $
Calculative error Percent error $ \delta^{ \alpha'}_ \alpha $
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.1) 0.1 0.601407040658915 83.81 %
0.01 0.143648723675101 20.02 %
0.001 0.027371563705550 3.81 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.5) 0.1 0.643179867112674 79.89 %
0.01 0.167904683423887 20.85 %
0.001 0.025589340748129 3.18 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.9) 0.1 0.629790962460797 61.54 %
0.01 0.219601251416672 21.46 %
0.001 0.040291675260527 3.94 %
$ \epsilon = |\alpha^* - \alpha| $ $ N(j) = 10,\; P =10,\; M = N =50 $
Calculative error Percent error $ \delta^{ \alpha'}_ \alpha $
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.1) 0.1 0.601407040658915 83.81 %
0.01 0.143648723675101 20.02 %
0.001 0.027371563705550 3.81 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.5) 0.1 0.643179867112674 79.89 %
0.01 0.167904683423887 20.85 %
0.001 0.025589340748129 3.18 %
$ \mathrm{Error}^{ \alpha^*}_ \alpha $(0.9) 0.1 0.629790962460797 61.54 %
0.01 0.219601251416672 21.46 %
0.001 0.040291675260527 3.94 %
[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[5]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[6]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[7]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[10]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[11]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[12]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[15]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[16]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[17]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[18]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[19]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[20]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (42)
  • Cited by (0)

[Back to Top]