-
Previous Article
Weak pullback attractors for stochastic Ginzburg-Landau equations in Bochner spaces
- DCDS-B Home
- This Issue
-
Next Article
Complex dynamics in a quasi-periodic plasma perturbations model
Asymptotic behaviour of the solutions for a weakly damped anisotropic sixth-order Schrödinger type equation in $ \mathbb{R}^2 $
University of Monastir, Faculty of Sciences, Research Laboratory: Analysis, Probability and Fractals, The Environment Avenue, 5019 Monastir, Tunisia |
$ \mathbb{R}^2 $ |
$ u_t+i\Delta u-i \left(\partial_y^4 u-\partial_y^6 u\right)+ig(|u|^2)u+\gamma u = f\,,\;\;(t,(x,y))\in \mathbb{R}\times \mathbb{R}^2\,. $ |
References:
[1] |
B. Alouini,
Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.
doi: 10.3934/cpaa.2015.14.1781. |
[2] |
B. Alouini,
Finite dimensional global attractor for a dissipative anisotropic fourth order Schrödinger equation, Journal of Differential Equations, 266 (2019), 6037-6067.
doi: 10.1016/j.jde.2018.10.044. |
[3] |
B. Alouini,
A note on the finite fractal dimension of the global attractors for dissipative nonlinear Schrödinger-type equations, Math. Meth. Appl. Sci., 44 (2021), 91-103.
doi: 10.1002/mma.6709. |
[4] |
B. Alouini and O. Goubet,
Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete and Continuous Dynamical Systems - B, 19 (2014), 651-677.
doi: 10.3934/dcdsb.2014.19.651. |
[5] |
A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E, 93 (2016), 012206.
doi: 10.1103/PhysRevE.93.012206. |
[6] |
J. M. Ball,
Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[7] |
O. V. Besov, V. P. Il'in and S. M. Nikol'ski ĭ, Integral Representations of Functions and Imbedding Theorems, Scripta Series in Mathematics, I, 1978. |
[8] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, New York, 2003.
doi: 10.1090/cln/010. |
[9] |
I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 2002. |
[10] |
I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008.
doi: 10.1090/memo/0912. |
[11] |
S. Cui and S. Tao,
Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Anal. Appl., 304 (2005), 683-702.
doi: 10.1016/j.jmaa.2004.09.049. |
[12] |
G. Fibich and G. Papanicolao,
A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation, Phys. Lett. A, 239 (1998), 167-173.
doi: 10.1016/S0375-9601(97)00941-9. |
[13] |
G. Fibich, B. Ilan and S. Schochet,
Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion, Nonlinearity, 16 (2003), 1809-1821.
doi: 10.1088/0951-7715/16/5/314. |
[14] |
O. Goubet,
Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Advances in Differential Equations, 3 (1998), 337-360.
|
[15] |
C. Guo and S. Cui,
Solvability of the Cauchy problem of non-isotropic Schrödinger equations in Sobolev spaces, Nonlinear Analysis, 68 (2008), 768-780.
doi: 10.1016/j.na.2006.11.033. |
[16] |
C. Guo, X. Zhao and X. Wei,
Cauchy problem for higher-order Schrödinger equations in aniosotropic Sobolev space, App. Anal., 88 (2009), 1329-1338.
doi: 10.1080/00036810903277127. |
[17] |
V. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336–R1339.
doi: 10.1016/0375-9601(95)00752-0. |
[18] |
Z. Lan and B. Guo, Conservation laws, modulation instability and solitons interactions for a nonlinear Schrödinger equation with the sextic operators in an optical fiber, Optical and Quantum Electronics, 50 (2018).
doi: 10.1007/s11082-018-1597-7. |
[19] |
P. Laurençot,
Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $\mathbb{R}^N, \; N\leq 3$, NoDEA, 2 (1995), 357-369.
doi: 10.1007/BF01261181. |
[20] |
E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001.
doi: 10.1090/gsm/014. |
[21] |
P. V. Mamyshev and S. V. Chernikov,
Ultrashort pulse propagation in optics fibers, Optics Letters, 15 (1990), 1076-1078.
doi: 10.1364/OL.15.001076. |
[22] |
B. Pausader,
Global wellposedness and scattering for the defocusing energy critical fourth-order Schrödinger equations in the radial case, Dynamics of PDE, 4 (2007), 197-225.
doi: 10.4310/DPDE.2007.v4.n3.a1. |
[23] |
B. Pausader,
The cubic fourth-order Schrödinger equation, J. of Funct. Anal., 256 (2009), 2473-2517.
doi: 10.1016/j.jfa.2008.11.009. |
[24] |
G. Raugel, Global attractors in partial differential equations, in Handbook of Dynamical Systems, 2, North-Holland, (2002), 885–982.
doi: 10.1016/S1874-575X(02)80038-8. |
[25] |
J. C. Robinson, Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theorie of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.
doi: 10.1115/1.1579456.![]() ![]() |
[26] |
Y. V. Sedletsky and I. S. Gandzha,
A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains, Nonlinear Dyamics, 94 (2018), 1921-1932.
doi: 10.1007/s11071-018-4465-x. |
[27] |
E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Monographs in Harmonic Analysis, 43, Princeton University Press, New Jersey, 1993.
![]() |
[28] |
J. Su and Y. Gao, Bilinear forms and solitons for a generalized sixth-order nonlinear Schrödinger equation in an optical fiber, The European Physical Journal Plus, 132 (2017).
doi: 10.1140/epjp/i2017-11308-1. |
[29] |
H. Su and C. Guo,
The solution of anisotropic sixth-order Schrödinger equation, Math. Meth. Appl. Sci., 43 (2020), 1868-1891.
doi: 10.1002/mma.6009. |
[30] |
W. Sun, Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers, Annalen der Physik, 529 (2017), 1600227.
doi: 10.1002/andp.201600227. |
[31] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer Applied Mathmatical Sciences, 68, Springer-Verlag, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[32] |
P. Tomas,
A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.
doi: 10.1090/S0002-9904-1975-13790-6. |
[33] |
M. V. Vladimirov,
On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk. SSSR, 275 (1984), 780-783.
|
[34] |
X. Wang,
An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.
doi: 10.1016/0167-2789(95)00196-B. |
[35] |
Y. Yue, L. Huang and Y. Chen, Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation, (2019). Available from: https://arXiv.org/pdf/1908.04941.pdf
doi: 10.1016/j.cnsns.2020.105284. |
show all references
References:
[1] |
B. Alouini,
Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.
doi: 10.3934/cpaa.2015.14.1781. |
[2] |
B. Alouini,
Finite dimensional global attractor for a dissipative anisotropic fourth order Schrödinger equation, Journal of Differential Equations, 266 (2019), 6037-6067.
doi: 10.1016/j.jde.2018.10.044. |
[3] |
B. Alouini,
A note on the finite fractal dimension of the global attractors for dissipative nonlinear Schrödinger-type equations, Math. Meth. Appl. Sci., 44 (2021), 91-103.
doi: 10.1002/mma.6709. |
[4] |
B. Alouini and O. Goubet,
Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete and Continuous Dynamical Systems - B, 19 (2014), 651-677.
doi: 10.3934/dcdsb.2014.19.651. |
[5] |
A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E, 93 (2016), 012206.
doi: 10.1103/PhysRevE.93.012206. |
[6] |
J. M. Ball,
Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[7] |
O. V. Besov, V. P. Il'in and S. M. Nikol'ski ĭ, Integral Representations of Functions and Imbedding Theorems, Scripta Series in Mathematics, I, 1978. |
[8] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, New York, 2003.
doi: 10.1090/cln/010. |
[9] |
I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 2002. |
[10] |
I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008.
doi: 10.1090/memo/0912. |
[11] |
S. Cui and S. Tao,
Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Anal. Appl., 304 (2005), 683-702.
doi: 10.1016/j.jmaa.2004.09.049. |
[12] |
G. Fibich and G. Papanicolao,
A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation, Phys. Lett. A, 239 (1998), 167-173.
doi: 10.1016/S0375-9601(97)00941-9. |
[13] |
G. Fibich, B. Ilan and S. Schochet,
Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion, Nonlinearity, 16 (2003), 1809-1821.
doi: 10.1088/0951-7715/16/5/314. |
[14] |
O. Goubet,
Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Advances in Differential Equations, 3 (1998), 337-360.
|
[15] |
C. Guo and S. Cui,
Solvability of the Cauchy problem of non-isotropic Schrödinger equations in Sobolev spaces, Nonlinear Analysis, 68 (2008), 768-780.
doi: 10.1016/j.na.2006.11.033. |
[16] |
C. Guo, X. Zhao and X. Wei,
Cauchy problem for higher-order Schrödinger equations in aniosotropic Sobolev space, App. Anal., 88 (2009), 1329-1338.
doi: 10.1080/00036810903277127. |
[17] |
V. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336–R1339.
doi: 10.1016/0375-9601(95)00752-0. |
[18] |
Z. Lan and B. Guo, Conservation laws, modulation instability and solitons interactions for a nonlinear Schrödinger equation with the sextic operators in an optical fiber, Optical and Quantum Electronics, 50 (2018).
doi: 10.1007/s11082-018-1597-7. |
[19] |
P. Laurençot,
Long-time behavior for weakly damped driven nonlinear Schrödinger equations in $\mathbb{R}^N, \; N\leq 3$, NoDEA, 2 (1995), 357-369.
doi: 10.1007/BF01261181. |
[20] |
E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001.
doi: 10.1090/gsm/014. |
[21] |
P. V. Mamyshev and S. V. Chernikov,
Ultrashort pulse propagation in optics fibers, Optics Letters, 15 (1990), 1076-1078.
doi: 10.1364/OL.15.001076. |
[22] |
B. Pausader,
Global wellposedness and scattering for the defocusing energy critical fourth-order Schrödinger equations in the radial case, Dynamics of PDE, 4 (2007), 197-225.
doi: 10.4310/DPDE.2007.v4.n3.a1. |
[23] |
B. Pausader,
The cubic fourth-order Schrödinger equation, J. of Funct. Anal., 256 (2009), 2473-2517.
doi: 10.1016/j.jfa.2008.11.009. |
[24] |
G. Raugel, Global attractors in partial differential equations, in Handbook of Dynamical Systems, 2, North-Holland, (2002), 885–982.
doi: 10.1016/S1874-575X(02)80038-8. |
[25] |
J. C. Robinson, Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theorie of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.
doi: 10.1115/1.1579456.![]() ![]() |
[26] |
Y. V. Sedletsky and I. S. Gandzha,
A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains, Nonlinear Dyamics, 94 (2018), 1921-1932.
doi: 10.1007/s11071-018-4465-x. |
[27] |
E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Monographs in Harmonic Analysis, 43, Princeton University Press, New Jersey, 1993.
![]() |
[28] |
J. Su and Y. Gao, Bilinear forms and solitons for a generalized sixth-order nonlinear Schrödinger equation in an optical fiber, The European Physical Journal Plus, 132 (2017).
doi: 10.1140/epjp/i2017-11308-1. |
[29] |
H. Su and C. Guo,
The solution of anisotropic sixth-order Schrödinger equation, Math. Meth. Appl. Sci., 43 (2020), 1868-1891.
doi: 10.1002/mma.6009. |
[30] |
W. Sun, Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers, Annalen der Physik, 529 (2017), 1600227.
doi: 10.1002/andp.201600227. |
[31] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer Applied Mathmatical Sciences, 68, Springer-Verlag, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[32] |
P. Tomas,
A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.
doi: 10.1090/S0002-9904-1975-13790-6. |
[33] |
M. V. Vladimirov,
On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk. SSSR, 275 (1984), 780-783.
|
[34] |
X. Wang,
An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.
doi: 10.1016/0167-2789(95)00196-B. |
[35] |
Y. Yue, L. Huang and Y. Chen, Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation, (2019). Available from: https://arXiv.org/pdf/1908.04941.pdf
doi: 10.1016/j.cnsns.2020.105284. |
[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[3] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[4] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[5] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[6] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[7] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[8] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[9] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[10] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[11] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[12] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[13] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[14] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[15] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[16] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[17] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[18] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[19] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[20] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]