doi: 10.3934/dcdsb.2021034

Modeling, approximation, and time optimal temperature control for binder removal from ceramics

1. 

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

2. 

Department of Mechanical and Aerospace Engineering, and Department of Chemical Engineering, Columbia, MO 65211, USA

3. 

Department of Chemical Engineering, University of Missouri, Columbia, MO 65211, USA

* Corresponding author: Stephen J. Lombardo

Received  September 2020 Revised  November 2020 Published  February 2021

The process of binder removal from green ceramic components-a reaction-gas transport problem in porous media-has been analyzed with a number of mathematical techniques: 1) non-dimensionalization of the governing decomposition-reaction ordinary differential equation (ODE) and of the reaction gas-permeability partial differential equation (PDE); 2) development of a pseudo steady state approximation (PSSA) for the PDE, including error analysis via $ L^2 $ norm and singular perturbation methods; 3) derivation and analysis of a discrete model approximation; and 4) development of a time optimal control strategy to minimize processing time with temperature and pressure constraints. Theoretical analyses indicate the conditions under which the PSSA and discrete models are viable approximations. Numerical results indicate that under a range of conditions corresponding to practical binder burnout conditions, utilization of the optimal temperature protocol leads to shorter cycle times as compared to typical industrial practice.

Citation: Carmen Chicone, Stephen J. Lombardo, David G. Retzloff. Modeling, approximation, and time optimal temperature control for binder removal from ceramics. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021034
References:
[1]

M. BisiF. Conforto and L. Desvillettes, Quasi-steady-state approximation for reaction-diffusion equations, Bull. Inst. Math., 2 (2007), 823-850.   Google Scholar

[2]

J. Elderling, Normally hyperbolic invariant manifolds. The noncompact case, Atlantis Studies in Dynamical Systems, 2 (2013). doi: 10.2991/978-94-6239-003-4.  Google Scholar

[3]

J. R. G. EvansM. J. EdirisingheJ. K. Wright and J. Crank, On the removal of organic vehicle from moulded ceramic bodies, Proc. R. Soc. London A, 432 (1991), 321-340.   Google Scholar

[4]

K. Feng and S. J. Lombardo, Modeling of the pressure distribution in three-dimensional porous green bodies during binder removal, J. Am. Ceram. Soc., 86 (2003), 234-240.  doi: 10.1111/j.1151-2916.2003.tb00005.x.  Google Scholar

[5]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1972), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[6]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqs., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[7]

S. J. Fraser, The steady state and equilibrium approximations: A geometrical picture, J. Chem. Phys., 88 (1988), 4732-4738.  doi: 10.1063/1.454686.  Google Scholar

[8]

R. M. German, Theory of thermal debinding, Int. J. Powder Metall., 23 (1987), 237-245.   Google Scholar

[9]

K. Kim and Y. Yao, The Patlak–Keller–Segel model and its variations: Properties of solutions via maximum principle, SIAM J. Math. Anal., 44 (2012), 568-602.  doi: 10.1137/110823584.  Google Scholar

[10]

J. A. Lewis, Binder removal from ceramics, Annual Rev. Mater. Sci., 27 (1997), 147-173.  doi: 10.1146/annurev.matsci.27.1.147.  Google Scholar

[11]

L. C-K. Liau and C-C. Chiu, Optimal heating strategies of polymer binder burnout process using dynamic optimization scheme, Ind. Che. Res., 44 (2005), 4586-4593.  doi: 10.1021/ie049143a.  Google Scholar

[12]

L. C.-K. LiauB. PetersD. S. KruegerA. GordonD. S. Viswanath and S. J. Lombardo, Role of length scale on pressure increase and yield of poly(vinyl butyral)-barium titanate-platinum multilayer ceramic capacitors during binder burnout, J. Am. Ceram. Soc., 83 (2000), 2645-2653.  doi: 10.1111/j.1151-2916.2000.tb01609.x.  Google Scholar

[13]

K. C. Liddell, Shrinking core models in hydrometallurgy: What students are not being told about the pseudo-steady approximation, Hydromet., 79 (2005), 62-68.  doi: 10.1016/j.hydromet.2003.07.011.  Google Scholar

[14]

J. D. Logan, An Introduction to Nonlinear Partial Differential Equations, Wiley, Hoboken, 2008. doi: 10.1002/9780470287095.  Google Scholar

[15]

S. J. Lombardo, Minimum time heating cycles for diffusion-controlled binder removal from ceramic green bodies, J. Amer. Ceram. Soc., 98 (2015), 57-65.   Google Scholar

[16]

S. J. Lombardo and Z. C. Feng, Pressure distribution during binder burnout in three-dimensional porous ceramic bodies with anisotropic permeability, J. Mat. Res., 17 (2002), 1434-1440.  doi: 10.1557/JMR.2002.0213.  Google Scholar

[17]

S. J. Lombardo and Z. C. Feng, Analytic method for the minimum time for binder removal from three-dimensional porous green bodies, J. Mat. Res., 18 (2003), 2717-2723.  doi: 10.1557/JMR.2003.0378.  Google Scholar

[18]

S. J. Lombardo and D. G. Retzloff, A process control algorithm for reaction-diffusion minimum time heating cycles for binder removal from green bodies, J. Amer. Ceram. Soc., 102 (2019), 1030-1040.  doi: 10.1111/jace.15964.  Google Scholar

[19]

S. J. Lombardo and D. G. Retzloff, Reaction-permeability optimum time heating policy via process control for debinding green ceramic components, Adv. Appl. Ceram., 119 (2020), 150-157.  doi: 10.1080/17436753.2019.1707393.  Google Scholar

[20]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption in biochemistry: A case study in perturbation, SIAM Rev., 31 (1989), 446-477.  doi: 10.1137/1031091.  Google Scholar

[21]

I. StakgoldK. B. Bischoff and V. V. Gokhale, Validity of the pseudo-steady-state approximation, Int. J. Engng. Sci., 21 (1983), 537-542.  doi: 10.1016/0020-7225(83)90101-5.  Google Scholar

[22]

G. Y. Stangle and I. A. Aksay, Simultaneous momentum, heat and mass transfer with chemical reaction in a disordered porous medium: Application to binder removal from a ceramic green body, Chem. Eng. Sci., 45 (1990), 1719-1731.  doi: 10.1016/0009-2509(90)87050-3.  Google Scholar

[23]

T. A. TurányiS. Tomlin and M. J. Pilling, On the error of the quasi-steady-state approximation, J. Phys. Chem., 97 (1993), 63-172.   Google Scholar

[24]

D-S. Tsai, Pressure buildup and internal stresses during binder burnout: numerical analysis, AIChE J., 37 (1991), 547-554.  doi: 10.1002/aic.690370408.  Google Scholar

[25] J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007.   Google Scholar

show all references

References:
[1]

M. BisiF. Conforto and L. Desvillettes, Quasi-steady-state approximation for reaction-diffusion equations, Bull. Inst. Math., 2 (2007), 823-850.   Google Scholar

[2]

J. Elderling, Normally hyperbolic invariant manifolds. The noncompact case, Atlantis Studies in Dynamical Systems, 2 (2013). doi: 10.2991/978-94-6239-003-4.  Google Scholar

[3]

J. R. G. EvansM. J. EdirisingheJ. K. Wright and J. Crank, On the removal of organic vehicle from moulded ceramic bodies, Proc. R. Soc. London A, 432 (1991), 321-340.   Google Scholar

[4]

K. Feng and S. J. Lombardo, Modeling of the pressure distribution in three-dimensional porous green bodies during binder removal, J. Am. Ceram. Soc., 86 (2003), 234-240.  doi: 10.1111/j.1151-2916.2003.tb00005.x.  Google Scholar

[5]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1972), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[6]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqs., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[7]

S. J. Fraser, The steady state and equilibrium approximations: A geometrical picture, J. Chem. Phys., 88 (1988), 4732-4738.  doi: 10.1063/1.454686.  Google Scholar

[8]

R. M. German, Theory of thermal debinding, Int. J. Powder Metall., 23 (1987), 237-245.   Google Scholar

[9]

K. Kim and Y. Yao, The Patlak–Keller–Segel model and its variations: Properties of solutions via maximum principle, SIAM J. Math. Anal., 44 (2012), 568-602.  doi: 10.1137/110823584.  Google Scholar

[10]

J. A. Lewis, Binder removal from ceramics, Annual Rev. Mater. Sci., 27 (1997), 147-173.  doi: 10.1146/annurev.matsci.27.1.147.  Google Scholar

[11]

L. C-K. Liau and C-C. Chiu, Optimal heating strategies of polymer binder burnout process using dynamic optimization scheme, Ind. Che. Res., 44 (2005), 4586-4593.  doi: 10.1021/ie049143a.  Google Scholar

[12]

L. C.-K. LiauB. PetersD. S. KruegerA. GordonD. S. Viswanath and S. J. Lombardo, Role of length scale on pressure increase and yield of poly(vinyl butyral)-barium titanate-platinum multilayer ceramic capacitors during binder burnout, J. Am. Ceram. Soc., 83 (2000), 2645-2653.  doi: 10.1111/j.1151-2916.2000.tb01609.x.  Google Scholar

[13]

K. C. Liddell, Shrinking core models in hydrometallurgy: What students are not being told about the pseudo-steady approximation, Hydromet., 79 (2005), 62-68.  doi: 10.1016/j.hydromet.2003.07.011.  Google Scholar

[14]

J. D. Logan, An Introduction to Nonlinear Partial Differential Equations, Wiley, Hoboken, 2008. doi: 10.1002/9780470287095.  Google Scholar

[15]

S. J. Lombardo, Minimum time heating cycles for diffusion-controlled binder removal from ceramic green bodies, J. Amer. Ceram. Soc., 98 (2015), 57-65.   Google Scholar

[16]

S. J. Lombardo and Z. C. Feng, Pressure distribution during binder burnout in three-dimensional porous ceramic bodies with anisotropic permeability, J. Mat. Res., 17 (2002), 1434-1440.  doi: 10.1557/JMR.2002.0213.  Google Scholar

[17]

S. J. Lombardo and Z. C. Feng, Analytic method for the minimum time for binder removal from three-dimensional porous green bodies, J. Mat. Res., 18 (2003), 2717-2723.  doi: 10.1557/JMR.2003.0378.  Google Scholar

[18]

S. J. Lombardo and D. G. Retzloff, A process control algorithm for reaction-diffusion minimum time heating cycles for binder removal from green bodies, J. Amer. Ceram. Soc., 102 (2019), 1030-1040.  doi: 10.1111/jace.15964.  Google Scholar

[19]

S. J. Lombardo and D. G. Retzloff, Reaction-permeability optimum time heating policy via process control for debinding green ceramic components, Adv. Appl. Ceram., 119 (2020), 150-157.  doi: 10.1080/17436753.2019.1707393.  Google Scholar

[20]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption in biochemistry: A case study in perturbation, SIAM Rev., 31 (1989), 446-477.  doi: 10.1137/1031091.  Google Scholar

[21]

I. StakgoldK. B. Bischoff and V. V. Gokhale, Validity of the pseudo-steady-state approximation, Int. J. Engng. Sci., 21 (1983), 537-542.  doi: 10.1016/0020-7225(83)90101-5.  Google Scholar

[22]

G. Y. Stangle and I. A. Aksay, Simultaneous momentum, heat and mass transfer with chemical reaction in a disordered porous medium: Application to binder removal from a ceramic green body, Chem. Eng. Sci., 45 (1990), 1719-1731.  doi: 10.1016/0009-2509(90)87050-3.  Google Scholar

[23]

T. A. TurányiS. Tomlin and M. J. Pilling, On the error of the quasi-steady-state approximation, J. Phys. Chem., 97 (1993), 63-172.   Google Scholar

[24]

D-S. Tsai, Pressure buildup and internal stresses during binder burnout: numerical analysis, AIChE J., 37 (1991), 547-554.  doi: 10.1002/aic.690370408.  Google Scholar

[25] J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007.   Google Scholar
Figure 1.  Top panel: Centerline pressure versus temperature for linear temperature rise test case $ \beta = 5.6 \times 10^{-4} $ K/s (that is $ T(t) = \beta t+300 $) and green body length $ L = 0.01 $ m using numerical experiments with PDE model (5), PSSA (46), and three-station model (64). Bottom three panels: Relative centerline PSSA error for green body lengths (from top to bottom) $ 0.001 $ m, $ 0.01 $ m and $ 0.1 $ m
Figure 2.  Numerically approximated graphs of $ L^2 $ norms of difference between $ \epsilon \rho $ and corresponding PSSA versus temperature in physical units ([$ \rho \sqrt{L/2} $]) = mol/m$ ^{5/2} $ for the linear temperature rise (57) test case where $ \beta = 5.6\times 10^{-4} $ and green body lengths $ L = 0.001, 0.01, 0.1 $ m (depicted in order from bottom to top). The $ L^2 $ error is obtained using finite-difference approximation (MacCormack's method) of the solution of the model equations (5) and numerical quadrature for the $ L^2 $ norm, and the theoretical bound is computed likewise from the solution of the ODE (55)
Figure 3.  Numerically approximated graphs of the absolute value of the quality function and the absolute difference between $ u: = \epsilon \rho $ and the corresponding PSSA versus temperature (both computed at the centerline) for the linear temperature rise (57) test case where $ \beta = 5.6\times 10^{-4} $ and three green body lengths $ L = 0.001, 0.01, 0.1 $ m (depicted in order from bottom to top). The solution of the model equations (5) is approximated using MacCormack's method, and the quality function is computed using (44). Note: To benchmark the values, $ \rho_0 = 40 $ mol/m$ ^3 $
Figure 4.  Graphs of numerical approximations of pressure versus temperature for the linear temperature rise test case $ \beta = 5.6 \times 10^{-4} $ K/s (that is $ T(t) = \beta t+300 $) are depicted for a solid cylinder of height $ 0.03 $ cm and radius $ 0.005 $ cm using the PDE model (5) and corresponding PSSA at the geometric center computed using one (PSSA$ _1 $), two (PSSA$ _2 $), and ten (PSSA$ _{10} $) of its (transport scaled) power series representation (29) with post process conversion to corresponding physical units
Figure 5.  Top panel depicts optimal temperature protocol versus time for green body length $ 0.01 $ m, maximum temperature rise rate of 10 K per minute and maximum gas pressure $ 200\, 000 $ Pa for PDE model, PSSA, and three-station model. Bottom panel shows pressure versus temperature during the optimal temperature protocol for the three models
Figure 6.  Top panel depicts for the three-station model an approximation of the time-optimal temperature protocol for a green body of length $ 0.01 $ m for maximum temperature rise rates $ 0.015 $, $ 0.2 $, $ 0.5 $, $ 10.0 $ K per minute and maximum allowed gas pressure $ 200\,000 $ Pa. Bottom panel depicts corresponding pressure versus temperature
Figure 7.  Top panel depicts a comparison of the time optimal temperature protocols for the solid cylinder of height 3 cm and radius 0.5 cm as computed using the PDE model and ten terms of the series expansion representation (29) of its corresponding PSSA for the case of maximum heating rate 10 K per minute and maximum allowed gas pressure $ 150\,000 $ Pa, where the maximum is computed at the geometric center of the cylinder. Bottom panel depicts corresponding geometric center gas pressure versus temperature
Table 1.  Model Parameters
Name Value Description
$ T_0 $ 300.0 K initial temperature
$ P_0 $ $ 1.0\times 10^5 $ Pa ambient gas pressure
$ R $ 8.314 J/mol-K ideal gas constant
$ M $ $ 4.4\times 10^{-2} $ kg/mol molecular weight of gas
$ E $ $ 2.22\times 10^5 $ J/mol activation energy
$ A $ $ 1.67 \times 10^{16} $ /s pre-exponential factor
$ \mu $ $ 2.5\times 10^{-5} $ Pa-s viscosity of gas
$ S $ $ 6\times 10^6 $/m specific surface
$ k $ $ 5 $ tortuosity
$ \epsilon_{20} $ 0.4 initial binder volume fraction
$ \epsilon_3 $ 0.5 ceramic volume fraction
$ \rho_2 $ $ 1.0\times 10^3 $ kg/m$ ^3 $ polymer density
$ L $ 0.001–0.1 m green body length
Name Value Description
$ T_0 $ 300.0 K initial temperature
$ P_0 $ $ 1.0\times 10^5 $ Pa ambient gas pressure
$ R $ 8.314 J/mol-K ideal gas constant
$ M $ $ 4.4\times 10^{-2} $ kg/mol molecular weight of gas
$ E $ $ 2.22\times 10^5 $ J/mol activation energy
$ A $ $ 1.67 \times 10^{16} $ /s pre-exponential factor
$ \mu $ $ 2.5\times 10^{-5} $ Pa-s viscosity of gas
$ S $ $ 6\times 10^6 $/m specific surface
$ k $ $ 5 $ tortuosity
$ \epsilon_{20} $ 0.4 initial binder volume fraction
$ \epsilon_3 $ 0.5 ceramic volume fraction
$ \rho_2 $ $ 1.0\times 10^3 $ kg/m$ ^3 $ polymer density
$ L $ 0.001–0.1 m green body length
[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[7]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[8]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[11]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[14]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[15]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[16]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[17]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[18]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[19]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[20]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (15)
  • HTML views (45)
  • Cited by (0)

[Back to Top]