[1]
|
World Health Organization, Available from: https://www.who.int/health-topics/hiv-aids/.
|
[2]
|
Centers for Disease Control and Prevention, Available from: https://www.cdc.gov/tb/.
|
[3]
|
World Health Organization, Available from: https://www.who.int/tb/en/.
|
[4]
|
E. M. C. D'Agata, P. Magal, S. Ruan and G. Webb, Asymptotic behavior in nosocomial epidemic models with antibiotic resistance, Differential Integral Equations, 19 (2006), 573-600.
|
[5]
|
F. B. Agusto and A. Adekunle, Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model, Biosystems, 119 (2014), 20-44.
doi: 10.1016/j.biosystems.2014.03.006.
|
[6]
|
C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model, Discrete and Continuous Dynamical Systems - Series B, 18 (2013), 1999-2017.
doi: 10.3934/dcdsb.2013.18.1999.
|
[7]
|
S. Gakkhar and N. Chavda, A dynamical model for HIV-TB co-infection, Applied Mathematics and Computation, 218 (2012), 9261-9270.
doi: 10.1016/j.amc.2012.03.004.
|
[8]
|
I. Ghosh, P. K. Tiwari, S. Samanta, I. M. Elmojtaba, N. Al-Salti and J. Chattopadhyay, A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear, Mathematical Biosciences, 306 (2018), 160-169.
doi: 10.1016/j.mbs.2018.09.014.
|
[9]
|
Z.-K. Guo, H.-F. Huo and H. Xiang, Global dynamics of an age-structured malaria model with prevention, Mathematical Biosciences and Engineering, 16 (2019), 1625-1653.
doi: 10.3934/mbe.2019078.
|
[10]
|
H. Haario, M. Laine, A. Mira and E. Saksman, Dram: Efficient adaptive MCMC, Statistics and Computing, 16 (2006), 339-354.
doi: 10.1007/s11222-006-9438-0.
|
[11]
|
J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395.
doi: 10.1137/0520025.
|
[12]
|
M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giadini Editori e Stampatori, Pisa, 1994.
|
[13]
|
D. Kirschner, Dynamics of co-infection with M. tuberculosis and HIV-1, Theoretical Population Biology, 55 (1999), 94-109.
doi: 10.1006/tpbi.1998.1382.
|
[14]
|
P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122.
|
[15]
|
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM Journal on Mathematical Analysis, 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[16]
|
A. Mallela, S. Lenhart and N. K. Vaidya, HIV-TB co-infection treatment: Modeling and optimal control theory perspectives, Journal of Computational and Applied Mathematics, 307 (2016), 143-161.
doi: 10.1016/j.cam.2016.02.051.
|
[17]
|
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 254 (2008), 178-196.
doi: 10.1016/j.jtbi.2008.04.011.
|
[18]
|
M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
doi: 10.1007/978-1-4899-7612-3.
|
[19]
|
E. Massad, M. N. Burattini, F. A. B. Coutinho, H. M. Yang and S. M. Raimundo, Modeling the interaction between AIDS and tuberculosis, Mathematical and Computer Modelling, 17 (1993), 7-21.
doi: 10.1016/0895-7177(93)90013-O.
|
[20]
|
C. M. A. Pinto and A. R. M. Carvalho, New findings on the dynamics of HIV and TB coinfection models, Applied Mathematics and Computation, 242 (2014), 36-46.
doi: 10.1016/j.amc.2014.05.061.
|
[21]
|
M. Samsuzzoha, M. Singh and D. Lucy, Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza, Applied Mathematical Modelling, 37 (2013), 903-915.
doi: 10.1016/j.apm.2012.03.029.
|
[22]
|
S. C. Shiboski and N. P. Jewell, Statistical analysis of the time dependence of HIV infectivity based on partner study data, Journal of the American Statistical Association, 87 (1992), 360-372.
doi: 10.1080/01621459.1992.10475215.
|
[23]
|
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 118 2011.
doi: 10.1090/gsm/118.
|
[24]
|
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
|
[25]
|
National Bureau of Statistics of China, Available from: http://www.stats.gov.cn/.
|
[26]
|
Chinese Center for Disease Control and Prevention, Available from: http://www.chinacdc.cn/.
|