
-
Previous Article
Phase portraits of the Higgins–Selkov system
- DCDS-B Home
- This Issue
-
Next Article
Analysis of an age-structured model for HIV-TB co-infection
The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays
School of Mathematics and Statistics, Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450001, China |
In this paper, we consider a generalized predator-prey system described by a reaction-diffusion system with spatio-temporal delays. We study the local stability for the constant equilibria of predator-prey system with the generalized delay kernels. Moreover, using the specific delay kernels, we perform a qualitative analysis of the solutions, including existence, uniqueness, and boundedness of the solutions; global stability, and Hopf bifurcation of the nontrivial equilibria.
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[2] |
S. Chen and J. Shi,
Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment, SIAM J. Appl. Math., 80 (2020), 1247-1271.
doi: 10.1137/19M1289078. |
[3] |
S. Chen and J. Yu,
Stability analysis of a reaction–diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dynam. Differential Equations, 28 (2016), 857-866.
doi: 10.1007/s10884-014-9384-z. |
[4] |
K. S. Cheng,
Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541-548.
doi: 10.1137/0512047. |
[5] |
R. Cui and Y. Lou,
A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 6 (2016), 3305-3343.
doi: 10.1016/j.jde.2016.05.025. |
[6] |
S. A. Gourley and M. V. Bartuccelli,
Parameter domains for instability of uniform states in systems with many delays, J. Math. Biol., 35 (1997), 843-867.
doi: 10.1007/s002850050080. |
[7] |
S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996) 297–333.
doi: 10.1007/BF00160498. |
[8] |
S. A. Gourley and S. Ruan,
Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.
doi: 10.1137/S003614100139991. |
[9] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[10] |
X. Li, J. Ren, S. A. Campbell, G. S. K. Wolkowicz and H. Zhu, How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018, ) 785.
doi: 10.3934/dcdsb.2018043. |
[11] |
Y. Lou and R. B. Salako,
Dynamics of a parabolic-ODE competition system in heterogeneous environments, P. Am. Math. Soc., 148 (2020), 3025-3038.
doi: 10.1090/proc/14972. |
[12] |
R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900–902.
doi: 10.1126/science.177.4052.900. |
[13] |
A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li,
Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311-370.
doi: 10.1137/S0036144502404442. |
[14] |
C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Anal. Theor., 48 (2002), 349-362.
doi: 10.1016/S0362-546X(00)00189-9. |
[15] |
C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996), 751–779.
doi: 10.1006/jmaa.1996.0111. |
[16] |
C. V. Pao and W. H. Ruan, Quasilinear parabolic and elliptic systems with mixed quasimonotone functions, J. Differential Equations, 255 (2013), 1515-1553.
doi: 10.1016/j.jde.2013.05.015. |
[17] |
H. A. Priestley, Introduction to Complex Analysis, OUP Oxford, 2003. |
[18] |
J. Ren, L. Yu and S. Siegmund,
Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response, Nonlinear Dyn., 90 (2017), 19-41.
doi: 10.1007/s11071-017-3643-6. |
[19] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223.
doi: 10.1086/282272. |
[20] |
P. Song, Y. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114.
doi: 10.1016/j.jde.2019.05.022. |
[21] |
C. Tian, L. Zhang and Z. Ling,
The stability of a diffusion model of plankton allelopathy with spatio–temporal delays, Nonlinear Anal. Real World Appl., 10 (2009), 2036-2046.
doi: 10.1016/j.nonrwa.2008.03.016. |
[22] |
Z.-C. Wang, W.-T. Li and S. G. Ruan, Travelling wave fronts in reaction–diffusion systems with spatio–temporal delays, J. Differential Equations, 222 (2006), 185–232.
doi: 10.1016/j.jde.2005.08.010. |
[23] |
Y. Wang and J. Shi, Analysis of a reaction-diffusion benthic-drift model with strong Allee effect growth, J. Differential Equations, 269 (2020), 7605–7642.
doi: 10.1016/j.jde.2020.05.044. |
[24] |
J. Wang, J. Wei and J. Shi,
Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems, J. Differential Equations, 260 (2016), 3495-3523.
doi: 10.1016/j.jde.2015.10.036. |
[25] |
S. Wu and Y. Song,
Stability and spatiotemporal dynamics in a diffusive predator–prey model with nonlocal prey competition, Nonlinear Anal. Real World Appl., 48 (2019), 12-39.
doi: 10.1016/j.nonrwa.2019.01.004. |
[26] |
F. Yi, J. Wei and J. Shi,
Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |
show all references
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[2] |
S. Chen and J. Shi,
Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment, SIAM J. Appl. Math., 80 (2020), 1247-1271.
doi: 10.1137/19M1289078. |
[3] |
S. Chen and J. Yu,
Stability analysis of a reaction–diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dynam. Differential Equations, 28 (2016), 857-866.
doi: 10.1007/s10884-014-9384-z. |
[4] |
K. S. Cheng,
Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541-548.
doi: 10.1137/0512047. |
[5] |
R. Cui and Y. Lou,
A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 6 (2016), 3305-3343.
doi: 10.1016/j.jde.2016.05.025. |
[6] |
S. A. Gourley and M. V. Bartuccelli,
Parameter domains for instability of uniform states in systems with many delays, J. Math. Biol., 35 (1997), 843-867.
doi: 10.1007/s002850050080. |
[7] |
S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996) 297–333.
doi: 10.1007/BF00160498. |
[8] |
S. A. Gourley and S. Ruan,
Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.
doi: 10.1137/S003614100139991. |
[9] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[10] |
X. Li, J. Ren, S. A. Campbell, G. S. K. Wolkowicz and H. Zhu, How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018, ) 785.
doi: 10.3934/dcdsb.2018043. |
[11] |
Y. Lou and R. B. Salako,
Dynamics of a parabolic-ODE competition system in heterogeneous environments, P. Am. Math. Soc., 148 (2020), 3025-3038.
doi: 10.1090/proc/14972. |
[12] |
R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900–902.
doi: 10.1126/science.177.4052.900. |
[13] |
A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li,
Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311-370.
doi: 10.1137/S0036144502404442. |
[14] |
C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Anal. Theor., 48 (2002), 349-362.
doi: 10.1016/S0362-546X(00)00189-9. |
[15] |
C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996), 751–779.
doi: 10.1006/jmaa.1996.0111. |
[16] |
C. V. Pao and W. H. Ruan, Quasilinear parabolic and elliptic systems with mixed quasimonotone functions, J. Differential Equations, 255 (2013), 1515-1553.
doi: 10.1016/j.jde.2013.05.015. |
[17] |
H. A. Priestley, Introduction to Complex Analysis, OUP Oxford, 2003. |
[18] |
J. Ren, L. Yu and S. Siegmund,
Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response, Nonlinear Dyn., 90 (2017), 19-41.
doi: 10.1007/s11071-017-3643-6. |
[19] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223.
doi: 10.1086/282272. |
[20] |
P. Song, Y. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114.
doi: 10.1016/j.jde.2019.05.022. |
[21] |
C. Tian, L. Zhang and Z. Ling,
The stability of a diffusion model of plankton allelopathy with spatio–temporal delays, Nonlinear Anal. Real World Appl., 10 (2009), 2036-2046.
doi: 10.1016/j.nonrwa.2008.03.016. |
[22] |
Z.-C. Wang, W.-T. Li and S. G. Ruan, Travelling wave fronts in reaction–diffusion systems with spatio–temporal delays, J. Differential Equations, 222 (2006), 185–232.
doi: 10.1016/j.jde.2005.08.010. |
[23] |
Y. Wang and J. Shi, Analysis of a reaction-diffusion benthic-drift model with strong Allee effect growth, J. Differential Equations, 269 (2020), 7605–7642.
doi: 10.1016/j.jde.2020.05.044. |
[24] |
J. Wang, J. Wei and J. Shi,
Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems, J. Differential Equations, 260 (2016), 3495-3523.
doi: 10.1016/j.jde.2015.10.036. |
[25] |
S. Wu and Y. Song,
Stability and spatiotemporal dynamics in a diffusive predator–prey model with nonlocal prey competition, Nonlinear Anal. Real World Appl., 48 (2019), 12-39.
doi: 10.1016/j.nonrwa.2019.01.004. |
[26] |
F. Yi, J. Wei and J. Shi,
Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |

[1] |
Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273 |
[2] |
Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709 |
[3] |
Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125 |
[4] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[5] |
Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699 |
[6] |
Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082 |
[7] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[8] |
Francesca Sapuppo, Elena Umana, Mattia Frasca, Manuela La Rosa, David Shannahoff-Khalsa, Luigi Fortuna, Maide Bucolo. Complex spatio-temporal features in meg data. Mathematical Biosciences & Engineering, 2006, 3 (4) : 697-716. doi: 10.3934/mbe.2006.3.697 |
[9] |
Noura Azzabou, Nikos Paragios. Spatio-temporal speckle reduction in ultrasound sequences. Inverse Problems and Imaging, 2010, 4 (2) : 211-222. doi: 10.3934/ipi.2010.4.211 |
[10] |
Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao. Spatio-temporal keywords queries in HBase. Big Data & Information Analytics, 2016, 1 (1) : 81-91. doi: 10.3934/bdia.2016.1.81 |
[11] |
Zelik S.. Formally gradient reaction-diffusion systems in Rn have zero spatio-temporal topological. Conference Publications, 2003, 2003 (Special) : 960-966. doi: 10.3934/proc.2003.2003.960 |
[12] |
Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259 |
[13] |
Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017 |
[14] |
Buddhi Pantha, Judy Day, Suzanne Lenhart. Investigating the effects of intervention strategies in a spatio-temporal anthrax model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1607-1622. doi: 10.3934/dcdsb.2019242 |
[15] |
Shu Li, Zhenzhen Li, Binxiang Dai. Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022025 |
[16] |
Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002 |
[17] |
Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055 |
[18] |
Raimund BÜrger, Gerardo Chowell, Elvis GavilÁn, Pep Mulet, Luis M. Villada. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences & Engineering, 2018, 15 (1) : 95-123. doi: 10.3934/mbe.2018004 |
[19] |
Thomas Hillen, Jeffery Zielinski, Kevin J. Painter. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2513-2536. doi: 10.3934/dcdsb.2013.18.2513 |
[20] |
Rodrigo A. Garrido, Ivan Aguirre. Emergency logistics for disaster management under spatio-temporal demand correlation: The earthquakes case. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2369-2387. doi: 10.3934/jimo.2019058 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]