• Previous Article
    Analysis of stationary patterns arising from a time-discrete metapopulation model with nonlocal competition
  • DCDS-B Home
  • This Issue
  • Next Article
    Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes
doi: 10.3934/dcdsb.2021038
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays

School of Mathematics and Statistics, Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450001, China

* Corresponding author: taoyw77@163.com

Received  December 2020 Revised  August 2020 Early access January 2021

In this paper, we consider a generalized predator-prey system described by a reaction-diffusion system with spatio-temporal delays. We study the local stability for the constant equilibria of predator-prey system with the generalized delay kernels. Moreover, using the specific delay kernels, we perform a qualitative analysis of the solutions, including existence, uniqueness, and boundedness of the solutions; global stability, and Hopf bifurcation of the nontrivial equilibria.

Citation: Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021038
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

S. Chen and J. Shi, Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment, SIAM J. Appl. Math., 80 (2020), 1247-1271.  doi: 10.1137/19M1289078.  Google Scholar

[3]

S. Chen and J. Yu, Stability analysis of a reaction–diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dynam. Differential Equations, 28 (2016), 857-866.  doi: 10.1007/s10884-014-9384-z.  Google Scholar

[4]

K. S. Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541-548.  doi: 10.1137/0512047.  Google Scholar

[5]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 6 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[6]

S. A. Gourley and M. V. Bartuccelli, Parameter domains for instability of uniform states in systems with many delays, J. Math. Biol., 35 (1997), 843-867.  doi: 10.1007/s002850050080.  Google Scholar

[7]

S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996) 297–333. doi: 10.1007/BF00160498.  Google Scholar

[8]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.  doi: 10.1137/S003614100139991.  Google Scholar

[9]

S. A. Gourley and J. W.-H. So, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.  doi: 10.1007/s002850100109.  Google Scholar

[10]

X. Li, J. Ren, S. A. Campbell, G. S. K. Wolkowicz and H. Zhu, How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018, ) 785. doi: 10.3934/dcdsb.2018043.  Google Scholar

[11]

Y. Lou and R. B. Salako, Dynamics of a parabolic-ODE competition system in heterogeneous environments, P. Am. Math. Soc., 148 (2020), 3025-3038.  doi: 10.1090/proc/14972.  Google Scholar

[12]

R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900–902. doi: 10.1126/science.177.4052.900.  Google Scholar

[13]

A. B. MedvinskyS. V. PetrovskiiI. A. TikhonovaH. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311-370.  doi: 10.1137/S0036144502404442.  Google Scholar

[14]

C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Anal. Theor., 48 (2002), 349-362. doi: 10.1016/S0362-546X(00)00189-9.  Google Scholar

[15]

C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996), 751–779. doi: 10.1006/jmaa.1996.0111.  Google Scholar

[16]

C. V. Pao and W. H. Ruan, Quasilinear parabolic and elliptic systems with mixed quasimonotone functions, J. Differential Equations, 255 (2013), 1515-1553. doi: 10.1016/j.jde.2013.05.015.  Google Scholar

[17]

H. A. Priestley, Introduction to Complex Analysis, OUP Oxford, 2003.  Google Scholar

[18]

J. RenL. Yu and S. Siegmund, Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response, Nonlinear Dyn., 90 (2017), 19-41.  doi: 10.1007/s11071-017-3643-6.  Google Scholar

[19]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[20]

P. Song, Y. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114. doi: 10.1016/j.jde.2019.05.022.  Google Scholar

[21]

C. TianL. Zhang and Z. Ling, The stability of a diffusion model of plankton allelopathy with spatio–temporal delays, Nonlinear Anal. Real World Appl., 10 (2009), 2036-2046.  doi: 10.1016/j.nonrwa.2008.03.016.  Google Scholar

[22]

Z.-C. Wang, W.-T. Li and S. G. Ruan, Travelling wave fronts in reaction–diffusion systems with spatio–temporal delays, J. Differential Equations, 222 (2006), 185–232. doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[23]

Y. Wang and J. Shi, Analysis of a reaction-diffusion benthic-drift model with strong Allee effect growth, J. Differential Equations, 269 (2020), 7605–7642. doi: 10.1016/j.jde.2020.05.044.  Google Scholar

[24]

J. WangJ. Wei and J. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems, J. Differential Equations, 260 (2016), 3495-3523.  doi: 10.1016/j.jde.2015.10.036.  Google Scholar

[25]

S. Wu and Y. Song, Stability and spatiotemporal dynamics in a diffusive predator–prey model with nonlocal prey competition, Nonlinear Anal. Real World Appl., 48 (2019), 12-39.  doi: 10.1016/j.nonrwa.2019.01.004.  Google Scholar

[26]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

S. Chen and J. Shi, Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment, SIAM J. Appl. Math., 80 (2020), 1247-1271.  doi: 10.1137/19M1289078.  Google Scholar

[3]

S. Chen and J. Yu, Stability analysis of a reaction–diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dynam. Differential Equations, 28 (2016), 857-866.  doi: 10.1007/s10884-014-9384-z.  Google Scholar

[4]

K. S. Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541-548.  doi: 10.1137/0512047.  Google Scholar

[5]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 6 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[6]

S. A. Gourley and M. V. Bartuccelli, Parameter domains for instability of uniform states in systems with many delays, J. Math. Biol., 35 (1997), 843-867.  doi: 10.1007/s002850050080.  Google Scholar

[7]

S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996) 297–333. doi: 10.1007/BF00160498.  Google Scholar

[8]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.  doi: 10.1137/S003614100139991.  Google Scholar

[9]

S. A. Gourley and J. W.-H. So, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.  doi: 10.1007/s002850100109.  Google Scholar

[10]

X. Li, J. Ren, S. A. Campbell, G. S. K. Wolkowicz and H. Zhu, How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018, ) 785. doi: 10.3934/dcdsb.2018043.  Google Scholar

[11]

Y. Lou and R. B. Salako, Dynamics of a parabolic-ODE competition system in heterogeneous environments, P. Am. Math. Soc., 148 (2020), 3025-3038.  doi: 10.1090/proc/14972.  Google Scholar

[12]

R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900–902. doi: 10.1126/science.177.4052.900.  Google Scholar

[13]

A. B. MedvinskyS. V. PetrovskiiI. A. TikhonovaH. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311-370.  doi: 10.1137/S0036144502404442.  Google Scholar

[14]

C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Anal. Theor., 48 (2002), 349-362. doi: 10.1016/S0362-546X(00)00189-9.  Google Scholar

[15]

C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996), 751–779. doi: 10.1006/jmaa.1996.0111.  Google Scholar

[16]

C. V. Pao and W. H. Ruan, Quasilinear parabolic and elliptic systems with mixed quasimonotone functions, J. Differential Equations, 255 (2013), 1515-1553. doi: 10.1016/j.jde.2013.05.015.  Google Scholar

[17]

H. A. Priestley, Introduction to Complex Analysis, OUP Oxford, 2003.  Google Scholar

[18]

J. RenL. Yu and S. Siegmund, Bifurcations and chaos in a discrete predator–prey model with Crowley–Martin functional response, Nonlinear Dyn., 90 (2017), 19-41.  doi: 10.1007/s11071-017-3643-6.  Google Scholar

[19]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[20]

P. Song, Y. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114. doi: 10.1016/j.jde.2019.05.022.  Google Scholar

[21]

C. TianL. Zhang and Z. Ling, The stability of a diffusion model of plankton allelopathy with spatio–temporal delays, Nonlinear Anal. Real World Appl., 10 (2009), 2036-2046.  doi: 10.1016/j.nonrwa.2008.03.016.  Google Scholar

[22]

Z.-C. Wang, W.-T. Li and S. G. Ruan, Travelling wave fronts in reaction–diffusion systems with spatio–temporal delays, J. Differential Equations, 222 (2006), 185–232. doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[23]

Y. Wang and J. Shi, Analysis of a reaction-diffusion benthic-drift model with strong Allee effect growth, J. Differential Equations, 269 (2020), 7605–7642. doi: 10.1016/j.jde.2020.05.044.  Google Scholar

[24]

J. WangJ. Wei and J. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems, J. Differential Equations, 260 (2016), 3495-3523.  doi: 10.1016/j.jde.2015.10.036.  Google Scholar

[25]

S. Wu and Y. Song, Stability and spatiotemporal dynamics in a diffusive predator–prey model with nonlocal prey competition, Nonlinear Anal. Real World Appl., 48 (2019), 12-39.  doi: 10.1016/j.nonrwa.2019.01.004.  Google Scholar

[26]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

Figure 1.  Some examples of $ f(u) $ and $ g(u) $. (a). Logistic effect (blue), weak Allee effect (red), strong Allee effect (green). (b). Type I function (blue), Type Ⅱ function (red), Type Ⅲ function (green)
[1]

Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273

[2]

Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709

[3]

Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125

[4]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[5]

Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699

[6]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[7]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[8]

Francesca Sapuppo, Elena Umana, Mattia Frasca, Manuela La Rosa, David Shannahoff-Khalsa, Luigi Fortuna, Maide Bucolo. Complex spatio-temporal features in meg data. Mathematical Biosciences & Engineering, 2006, 3 (4) : 697-716. doi: 10.3934/mbe.2006.3.697

[9]

Noura Azzabou, Nikos Paragios. Spatio-temporal speckle reduction in ultrasound sequences. Inverse Problems & Imaging, 2010, 4 (2) : 211-222. doi: 10.3934/ipi.2010.4.211

[10]

Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao. Spatio-temporal keywords queries in HBase. Big Data & Information Analytics, 2016, 1 (1) : 81-91. doi: 10.3934/bdia.2016.1.81

[11]

Zelik S.. Formally gradient reaction-diffusion systems in Rn have zero spatio-temporal topological. Conference Publications, 2003, 2003 (Special) : 960-966. doi: 10.3934/proc.2003.2003.960

[12]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259

[13]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[14]

Buddhi Pantha, Judy Day, Suzanne Lenhart. Investigating the effects of intervention strategies in a spatio-temporal anthrax model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1607-1622. doi: 10.3934/dcdsb.2019242

[15]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[16]

Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055

[17]

Raimund BÜrger, Gerardo Chowell, Elvis GavilÁn, Pep Mulet, Luis M. Villada. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences & Engineering, 2018, 15 (1) : 95-123. doi: 10.3934/mbe.2018004

[18]

Thomas Hillen, Jeffery Zielinski, Kevin J. Painter. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2513-2536. doi: 10.3934/dcdsb.2013.18.2513

[19]

Rodrigo A. Garrido, Ivan Aguirre. Emergency logistics for disaster management under spatio-temporal demand correlation: The earthquakes case. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2369-2387. doi: 10.3934/jimo.2019058

[20]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (147)
  • HTML views (326)
  • Cited by (0)

Other articles
by authors

[Back to Top]