
-
Previous Article
Random perturbations of an eco-epidemiological model
- DCDS-B Home
- This Issue
-
Next Article
The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays
Phase portraits of the Higgins–Selkov system
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain |
2. | Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran |
$ \begin{equation*} \dot{x} = 1-xy^\gamma, \quad\dot{y} = \alpha y(xy^{\gamma -1}-1), \end{equation*} $ |
$ \alpha $ |
$ \gamma>1 $ |
$ \gamma = 3, 4, 5, 6, $ |
$ \alpha $ |
$ \alpha $ |
References:
[1] |
M. J. Álvarez, A. Ferragut and X. Jarque,
A survey on the blow up technique, Int. J. Bifurcation and Chaos, 21 (2011), 3103-3118.
doi: 10.1142/S0218127411030416. |
[2] |
J. C. Arteś, J. Llibre and C. Valls,
Dynamics of the Higgins–Selkov and Selkov system, Chaos. Sol. Frac., 114 (2018), 145-150.
doi: 10.1016/j.chaos.2018.07.007. |
[3] |
P. Brechmann and A. D. Rendall,
Dynamics of the Selkov oscillator, Mathematical Biosciences, 306 (2018), 152-159.
doi: 10.1016/j.mbs.2018.09.012. |
[4] |
P. Brechmann and A. D. Rendall, Unbounded solutions of models for glycolysis, preprint, arXiv: 2003.07140. |
[5] |
H. Chen, J. Llibre and Y. Tang,
Global dynamics of a SD oscillator, Nonlinear Dynamics, 91 (2018), 1755-1777.
doi: 10.1007/s11071-017-3979-y. |
[6] |
H. Chen and Y. Tang,
Proof of Arté-Llibre-Valls's conjectures for the Higgins–Selkov and Selkov systems, J. Differential Equations, 266 (2019), 7638-7657.
doi: 10.1016/j.jde.2018.12.011. |
[7] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, Berlin, 2006. |
[8] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, in: Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[9] |
J. Higgins,
A chemical mechanism for oscillation of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. (USA), 51 (1964), 989-994.
doi: 10.1073/pnas.51.6.989. |
[10] |
T.-W. Hwang and H.-J. Tsai,
Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions, J. Phys. A, 38 (2005), 8211-8223.
doi: 10.1088/0305-4470/38/38/003. |
[11] |
L. Perko, Differential Equations and Dynamical Systems, 3rd Ed., Springer, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[12] |
E. E. Sel'kov,
Self-oscillations in glycolysis. I. A simple kinetic model, Eur. J. Biochem., 4 (1968), 79-86.
doi: 10.1111/j.1432-1033.1968.tb00175.x. |
[13] |
L. Yang,
Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 28 (1999), 225-242.
doi: 10.1006/jsco.1998.0274. |
[14] |
Z. Zhang, T. Ding and W. Huang, Qualitative Theory of Differential Equations, Transl. Math. Monogr. Amer. Soc., Providence, RI, 1992. |
show all references
References:
[1] |
M. J. Álvarez, A. Ferragut and X. Jarque,
A survey on the blow up technique, Int. J. Bifurcation and Chaos, 21 (2011), 3103-3118.
doi: 10.1142/S0218127411030416. |
[2] |
J. C. Arteś, J. Llibre and C. Valls,
Dynamics of the Higgins–Selkov and Selkov system, Chaos. Sol. Frac., 114 (2018), 145-150.
doi: 10.1016/j.chaos.2018.07.007. |
[3] |
P. Brechmann and A. D. Rendall,
Dynamics of the Selkov oscillator, Mathematical Biosciences, 306 (2018), 152-159.
doi: 10.1016/j.mbs.2018.09.012. |
[4] |
P. Brechmann and A. D. Rendall, Unbounded solutions of models for glycolysis, preprint, arXiv: 2003.07140. |
[5] |
H. Chen, J. Llibre and Y. Tang,
Global dynamics of a SD oscillator, Nonlinear Dynamics, 91 (2018), 1755-1777.
doi: 10.1007/s11071-017-3979-y. |
[6] |
H. Chen and Y. Tang,
Proof of Arté-Llibre-Valls's conjectures for the Higgins–Selkov and Selkov systems, J. Differential Equations, 266 (2019), 7638-7657.
doi: 10.1016/j.jde.2018.12.011. |
[7] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, Berlin, 2006. |
[8] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, in: Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[9] |
J. Higgins,
A chemical mechanism for oscillation of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. (USA), 51 (1964), 989-994.
doi: 10.1073/pnas.51.6.989. |
[10] |
T.-W. Hwang and H.-J. Tsai,
Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions, J. Phys. A, 38 (2005), 8211-8223.
doi: 10.1088/0305-4470/38/38/003. |
[11] |
L. Perko, Differential Equations and Dynamical Systems, 3rd Ed., Springer, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[12] |
E. E. Sel'kov,
Self-oscillations in glycolysis. I. A simple kinetic model, Eur. J. Biochem., 4 (1968), 79-86.
doi: 10.1111/j.1432-1033.1968.tb00175.x. |
[13] |
L. Yang,
Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 28 (1999), 225-242.
doi: 10.1006/jsco.1998.0274. |
[14] |
Z. Zhang, T. Ding and W. Huang, Qualitative Theory of Differential Equations, Transl. Math. Monogr. Amer. Soc., Providence, RI, 1992. |


[1] |
Jaume Llibre, Arefeh Nabavi. Phase portraits of the Selkov model in the Poincaré disc. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022056 |
[2] |
Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 |
[3] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[4] |
Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 |
[5] |
Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309 |
[6] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[7] |
Hayato Chiba. Continuous limit and the moments system for the globally coupled phase oscillators. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1891-1903. doi: 10.3934/dcds.2013.33.1891 |
[8] |
Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Jürgen Sprekels. A vanishing diffusion limit in a nonstandard system of phase field equations. Evolution Equations and Control Theory, 2014, 3 (2) : 257-275. doi: 10.3934/eect.2014.3.257 |
[9] |
Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439 |
[10] |
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447 |
[11] |
Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure and Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1 |
[12] |
Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123 |
[13] |
Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081 |
[14] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[15] |
Yuncheng You. Asymptotical dynamics of Selkov equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 193-219. doi: 10.3934/dcdss.2009.2.193 |
[16] |
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5047-5083. doi: 10.3934/dcdsb.2021264 |
[17] |
Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 |
[18] |
Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846 |
[19] |
Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 |
[20] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5581-5599. doi: 10.3934/dcdsb.2020368 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]