doi: 10.3934/dcdsb.2021039

Phase portraits of the Higgins–Selkov system

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

2. 

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

* Corresponding author: Marzieh Mousavi

Received  August 2020 Revised  November 2020 Published  January 2021

Fund Project: The first author is partially supported by the Ministerio de Economìa, Industria y competitividad, Agencia Estatal de Investigación grant MTM2016-77278-P (FEDER), the Agència de Gestió d'Ajusts Universitaris i de Recerca grant 2017 SGR 1617, and the European project Dynamics-H2020-MSCA-RISE-2017-777911. The second author is supported by Isfahan University of Technology (IUT)

In this paper we study the dynamics of the Higgins–Selkov system
$ \begin{equation*} \dot{x} = 1-xy^\gamma, \quad\dot{y} = \alpha y(xy^{\gamma -1}-1), \end{equation*} $
where
$ \alpha $
is a real parameter and
$ \gamma>1 $
is an integer. We classify the phase portraits of this system for
$ \gamma = 3, 4, 5, 6, $
in the Poincaré disc for all the values of the parameter
$ \alpha $
. Moreover, we determine in function of the parameter
$ \alpha $
the regions of the phase space with biological meaning.
Citation: Jaume Llibre, Marzieh Mousavi. Phase portraits of the Higgins–Selkov system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021039
References:
[1]

M. J. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurcation and Chaos, 21 (2011), 3103-3118.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

J. C. ArteśJ. Llibre and C. Valls, Dynamics of the Higgins–Selkov and Selkov system, Chaos. Sol. Frac., 114 (2018), 145-150.  doi: 10.1016/j.chaos.2018.07.007.  Google Scholar

[3]

P. Brechmann and A. D. Rendall, Dynamics of the Selkov oscillator, Mathematical Biosciences, 306 (2018), 152-159.  doi: 10.1016/j.mbs.2018.09.012.  Google Scholar

[4]

P. Brechmann and A. D. Rendall, Unbounded solutions of models for glycolysis, preprint, arXiv: 2003.07140. Google Scholar

[5]

H. ChenJ. Llibre and Y. Tang, Global dynamics of a SD oscillator, Nonlinear Dynamics, 91 (2018), 1755-1777.  doi: 10.1007/s11071-017-3979-y.  Google Scholar

[6]

H. Chen and Y. Tang, Proof of Arté-Llibre-Valls's conjectures for the Higgins–Selkov and Selkov systems, J. Differential Equations, 266 (2019), 7638-7657.  doi: 10.1016/j.jde.2018.12.011.  Google Scholar

[7]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, Berlin, 2006.  Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, in: Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. Higgins, A chemical mechanism for oscillation of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. (USA), 51 (1964), 989-994.  doi: 10.1073/pnas.51.6.989.  Google Scholar

[10]

T.-W. Hwang and H.-J. Tsai, Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions, J. Phys. A, 38 (2005), 8211-8223.  doi: 10.1088/0305-4470/38/38/003.  Google Scholar

[11]

L. Perko, Differential Equations and Dynamical Systems, 3rd Ed., Springer, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[12]

E. E. Sel'kov, Self-oscillations in glycolysis. I. A simple kinetic model, Eur. J. Biochem., 4 (1968), 79-86.  doi: 10.1111/j.1432-1033.1968.tb00175.x.  Google Scholar

[13]

L. Yang, Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 28 (1999), 225-242.  doi: 10.1006/jsco.1998.0274.  Google Scholar

[14]

Z. Zhang, T. Ding and W. Huang, Qualitative Theory of Differential Equations, Transl. Math. Monogr. Amer. Soc., Providence, RI, 1992. Google Scholar

show all references

References:
[1]

M. J. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Int. J. Bifurcation and Chaos, 21 (2011), 3103-3118.  doi: 10.1142/S0218127411030416.  Google Scholar

[2]

J. C. ArteśJ. Llibre and C. Valls, Dynamics of the Higgins–Selkov and Selkov system, Chaos. Sol. Frac., 114 (2018), 145-150.  doi: 10.1016/j.chaos.2018.07.007.  Google Scholar

[3]

P. Brechmann and A. D. Rendall, Dynamics of the Selkov oscillator, Mathematical Biosciences, 306 (2018), 152-159.  doi: 10.1016/j.mbs.2018.09.012.  Google Scholar

[4]

P. Brechmann and A. D. Rendall, Unbounded solutions of models for glycolysis, preprint, arXiv: 2003.07140. Google Scholar

[5]

H. ChenJ. Llibre and Y. Tang, Global dynamics of a SD oscillator, Nonlinear Dynamics, 91 (2018), 1755-1777.  doi: 10.1007/s11071-017-3979-y.  Google Scholar

[6]

H. Chen and Y. Tang, Proof of Arté-Llibre-Valls's conjectures for the Higgins–Selkov and Selkov systems, J. Differential Equations, 266 (2019), 7638-7657.  doi: 10.1016/j.jde.2018.12.011.  Google Scholar

[7]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer Verlag, Berlin, 2006.  Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, in: Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. Higgins, A chemical mechanism for oscillation of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. (USA), 51 (1964), 989-994.  doi: 10.1073/pnas.51.6.989.  Google Scholar

[10]

T.-W. Hwang and H.-J. Tsai, Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions, J. Phys. A, 38 (2005), 8211-8223.  doi: 10.1088/0305-4470/38/38/003.  Google Scholar

[11]

L. Perko, Differential Equations and Dynamical Systems, 3rd Ed., Springer, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[12]

E. E. Sel'kov, Self-oscillations in glycolysis. I. A simple kinetic model, Eur. J. Biochem., 4 (1968), 79-86.  doi: 10.1111/j.1432-1033.1968.tb00175.x.  Google Scholar

[13]

L. Yang, Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 28 (1999), 225-242.  doi: 10.1006/jsco.1998.0274.  Google Scholar

[14]

Z. Zhang, T. Ding and W. Huang, Qualitative Theory of Differential Equations, Transl. Math. Monogr. Amer. Soc., Providence, RI, 1992. Google Scholar

Figure 1.  The phase portraits of system (1) for $ \gamma = 3\; \text{and}\; 5 $ in the Poincaré disc. The shaded areas correspond to the initial conditions of the orbits having a final finite evolution, so these are the initial conditions with biological meaning. In the phase portrait (c) the final behaviour is a stable singular point, and in the phase portrait (d) is a stable limit cycle
Figure 2.  The phase portraits of system (1) for $ \gamma = 4\; \text{and}\; 6 $ in the Poincaré disc. The shaded areas correspond to the initial conditions of the orbits having a final finite evolution, so these are the initial conditions with biological meaning. In the phase portrait (c) the final behaviour is a stable singular point, and in the phase portrait (d) is a stable limit cycle
[1]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[2]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[3]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[4]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[5]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[6]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[7]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[8]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[11]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[12]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[13]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[14]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[15]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[16]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[17]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[18]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[19]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]