doi: 10.3934/dcdsb.2021040
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Random perturbations of an eco-epidemiological model

1. 

Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, and Instituto Superior de Ciências da Educação, Rua Sarmento Rodrigues, Lubango, Angola

2. 

Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal

* Corresponding author: Helder Vilarinho

Received  September 2020 Revised  December 2020 Early access January 2021

Fund Project: L. F. de Jesus, C. M. Silva and H. Vilarinho were partially supported by FCT through CMA-UBI (project UIDB/MAT/00212/2020). L. F. de Jesus was also supported by INAGBE

We consider random perturbations of a general eco-epidemiological model. We prove the existence of a global random attractor, the persistence of susceptibles preys and provide conditions for the simultaneous extinction of infectives and predators. We also discuss the dynamics of the corresponding random epidemiological $ SI $ and predator-prey models. We obtain for this cases a global random attractor, prove the prevalence of susceptibles/preys and provide conditions for the extinctions of infectives/predators.

Citation: Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021040
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

Y. Asai and P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations, Commun. Appl. Anal., 17 (2013), 511–528.  Google Scholar

[3]

T. CaraballoR. Colucci and X. Han, Predation with indirect effects in fluctuating environments, Nonlinear Dynam., 84 (2016), 115-126.  doi: 10.1007/s11071-015-2238-3.  Google Scholar

[4]

T. CaraballoR. ColucciJ. López-de-la-Cruz and A. Rapaport, A way to model stochastic perturbations in population dynamics models with bounded realizations, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 239-257.  doi: 10.1016/j.cnsns.2019.04.019.  Google Scholar

[5]

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied Dynamical Systems, SpringerBriefs in Mathematics. Springer, Cham, 2016. doi: 10.1007/978-3-319-49247-6.  Google Scholar

[6]

T. Caraballo and R. Colucci, A comparison between random and stochastic modeling for a SIR model, Commun. Pure Appl. Anal., 16 (2017), 151-162.  doi: 10.3934/cpaa.2017007.  Google Scholar

[7]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math, Vol. 580. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[8]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Math, Vol. 1779. Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[9]

H. Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl., 176 (1999), 57-72.  doi: 10.1007/BF02505989.  Google Scholar

[10]

H. Crauel, Random point attractors versus random set attractors, J. London Math. Soc., 63 (2001), 413-427.  doi: 10.1017/S0024610700001915.  Google Scholar

[11]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[12]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math.-Ver., 117 (2015), 173-206.  doi: 10.1365/s13291-015-0115-0.  Google Scholar

[13]

H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 265 (2018), 702-718.  doi: 10.1016/j.jde.2018.03.011.  Google Scholar

[14]

H. Crauel, Random Probability Measures on Polish Spaces Stochastics Monographs, V.11, London, 2002.  Google Scholar

[15] J. W. Cholewa and T. Dloko, Global Attractors in the Abstract Parabolics Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[16]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[17]

M. Garrione and C. Rebelo, Persistence in seasonally varying predator-prey systems via the basic reproduction number, Nonlinear Anal. Real World Appl., 30 (2016), 73-98.  doi: 10.1016/j.nonrwa.2015.11.007.  Google Scholar

[18]

X. Han and P. E. Kloeden, Random Ordinary Differential Equations and Their Numerical Solution, Probability Theory and Stochastic Modelling, 85, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6265-0.  Google Scholar

[19]

L. F. de Jesus, C. M. Silva and H. Vilarinho, An Eco-epidemiological model with general functional response of predator to prey, preprint. Google Scholar

[20]

L. F. de JesusC. M. Silva and H. Vilarinho, Periodic orbits for periodic eco-epidemiological systems with infected prey, Electron. J. Qual. Theory Differ. Equ., 54 (2020), 1-20.  doi: 10.14232/ejqtde.2020.1.54.  Google Scholar

[21]

Y. LuX. Wang and S. Liu, A non-autonomous predator-prey model with infected prey, Discrete Contin. Dyn. Syst. B, 23 (2018), 3817-3836.  doi: 10.3934/dcdsb.2018082.  Google Scholar

[22]

C. RebeloA. Margheri and N. Bacaër, Persistence in seasonally forced epidemiological models, J. Math. Biol., 64 (2012), 933-949.  doi: 10.1007/s00285-011-0440-6.  Google Scholar

[23]

C. M. Silva, Existence of Periodic Solutions for Eco-Epidemic Model with Disease in the Prey, J. Math. Anal. Appl., 453 (2017), 383-397.  doi: 10.1016/j.jmaa.2017.03.074.  Google Scholar

[24]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[25]

X. NiuT. Zhang and Z. Teng, The asymptotic behavior of a nonautonomous eco-epidemic model with disease in the prey, Appl. Math. Model., 35 (2011), 457-470.  doi: 10.1016/j.apm.2010.07.010.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

Y. Asai and P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations, Commun. Appl. Anal., 17 (2013), 511–528.  Google Scholar

[3]

T. CaraballoR. Colucci and X. Han, Predation with indirect effects in fluctuating environments, Nonlinear Dynam., 84 (2016), 115-126.  doi: 10.1007/s11071-015-2238-3.  Google Scholar

[4]

T. CaraballoR. ColucciJ. López-de-la-Cruz and A. Rapaport, A way to model stochastic perturbations in population dynamics models with bounded realizations, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 239-257.  doi: 10.1016/j.cnsns.2019.04.019.  Google Scholar

[5]

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied Dynamical Systems, SpringerBriefs in Mathematics. Springer, Cham, 2016. doi: 10.1007/978-3-319-49247-6.  Google Scholar

[6]

T. Caraballo and R. Colucci, A comparison between random and stochastic modeling for a SIR model, Commun. Pure Appl. Anal., 16 (2017), 151-162.  doi: 10.3934/cpaa.2017007.  Google Scholar

[7]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math, Vol. 580. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[8]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Math, Vol. 1779. Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[9]

H. Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl., 176 (1999), 57-72.  doi: 10.1007/BF02505989.  Google Scholar

[10]

H. Crauel, Random point attractors versus random set attractors, J. London Math. Soc., 63 (2001), 413-427.  doi: 10.1017/S0024610700001915.  Google Scholar

[11]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[12]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math.-Ver., 117 (2015), 173-206.  doi: 10.1365/s13291-015-0115-0.  Google Scholar

[13]

H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 265 (2018), 702-718.  doi: 10.1016/j.jde.2018.03.011.  Google Scholar

[14]

H. Crauel, Random Probability Measures on Polish Spaces Stochastics Monographs, V.11, London, 2002.  Google Scholar

[15] J. W. Cholewa and T. Dloko, Global Attractors in the Abstract Parabolics Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[16]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[17]

M. Garrione and C. Rebelo, Persistence in seasonally varying predator-prey systems via the basic reproduction number, Nonlinear Anal. Real World Appl., 30 (2016), 73-98.  doi: 10.1016/j.nonrwa.2015.11.007.  Google Scholar

[18]

X. Han and P. E. Kloeden, Random Ordinary Differential Equations and Their Numerical Solution, Probability Theory and Stochastic Modelling, 85, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6265-0.  Google Scholar

[19]

L. F. de Jesus, C. M. Silva and H. Vilarinho, An Eco-epidemiological model with general functional response of predator to prey, preprint. Google Scholar

[20]

L. F. de JesusC. M. Silva and H. Vilarinho, Periodic orbits for periodic eco-epidemiological systems with infected prey, Electron. J. Qual. Theory Differ. Equ., 54 (2020), 1-20.  doi: 10.14232/ejqtde.2020.1.54.  Google Scholar

[21]

Y. LuX. Wang and S. Liu, A non-autonomous predator-prey model with infected prey, Discrete Contin. Dyn. Syst. B, 23 (2018), 3817-3836.  doi: 10.3934/dcdsb.2018082.  Google Scholar

[22]

C. RebeloA. Margheri and N. Bacaër, Persistence in seasonally forced epidemiological models, J. Math. Biol., 64 (2012), 933-949.  doi: 10.1007/s00285-011-0440-6.  Google Scholar

[23]

C. M. Silva, Existence of Periodic Solutions for Eco-Epidemic Model with Disease in the Prey, J. Math. Anal. Appl., 453 (2017), 383-397.  doi: 10.1016/j.jmaa.2017.03.074.  Google Scholar

[24]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[25]

X. NiuT. Zhang and Z. Teng, The asymptotic behavior of a nonautonomous eco-epidemic model with disease in the prey, Appl. Math. Model., 35 (2011), 457-470.  doi: 10.1016/j.apm.2010.07.010.  Google Scholar

[1]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[2]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[3]

Jing Li, Zhen Jin, Gui-Quan Sun, Li-Peng Song. Pattern dynamics of a delayed eco-epidemiological model with disease in the predator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1025-1042. doi: 10.3934/dcdss.2017054

[4]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098

[5]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[6]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[7]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[8]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[9]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[10]

Robert Hesse, Alexandra Neamţu. Global solutions and random dynamical systems for rough evolution equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2723-2748. doi: 10.3934/dcdsb.2020029

[11]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[12]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[13]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure & Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[14]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[15]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[16]

Weigu Li, Kening Lu. A Siegel theorem for dynamical systems under random perturbations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 635-642. doi: 10.3934/dcdsb.2008.9.635

[17]

Yuri Kifer. Computations in dynamical systems via random perturbations. Discrete & Continuous Dynamical Systems, 1997, 3 (4) : 457-476. doi: 10.3934/dcds.1997.3.457

[18]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[19]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[20]

Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060

2020 Impact Factor: 1.327

Article outline

[Back to Top]