-
Previous Article
Parameter identification on Abelian integrals to achieve Chebyshev property
- DCDS-B Home
- This Issue
-
Next Article
Analysis of an age-structured model for HIV-TB co-infection
Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $
1. | South China Research Center for Applied Mathematics and Interdisciplinary Studies and School of Mathematical Sciences, South China Normal University Guangzhou, 510631, China |
2. | School of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China |
3. | School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China |
A fluid-particle interaction model with magnetic field is studied in this paper. When the initial vacuum and the far field vacuum of the fluid and the particles are contained, the constant shear viscosity $ \mu $ and the bulk viscosity $ \lambda $ are $ \mu>0 $ $ \lambda = \rho^\beta $ for any $ \beta\geq 0 $, the strong solutions of the 2D Cauchy problem for the coupled system are established applying the method of weighted estimates in Li-Liang's paper on Navier-Stokes equations.
References:
[1] |
J. Ballew,
Low Mach number limits to the Navier-Stokes-Smoluchowski system. Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 301-308.
|
[2] |
J. Ballew, Mathematical Topics in Fluid-Particle Interaction, Ph.D thesis, University of Maryland, USA, 2014. |
[3] |
J. Ballew and K. Trivisa,
Weakly dissipative solutions and weak strong uniqueness for the Navier Stokes Smoluchowski system, Nonlinear Analysis Series A: Theory, Methods Applications, 91 (2013), 1-19.
doi: 10.1016/j.na.2013.06.002. |
[4] |
J. A. Carrillo and T. Goudon,
Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.
doi: 10.1080/03605300500394389. |
[5] |
J. A. Carrillo, T. Karper and K. Trivisa,
On the dynamics of a fluid-particle interaction model: The bubbling regime, Nonlinear Anal., 74 (2011), 2778-2801.
doi: 10.1016/j.na.2010.12.031. |
[6] |
Y. S. Chen, S. J. Ding and W. J. Wang,
Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Cont. Dyn. Serious A., 36 (2016), 5287-5307.
doi: 10.3934/dcds.2016032. |
[7] |
R. M. Chen, J. L. Hu and D. H. Wang,
Global weak solutions to the magnetohydrodynamic and Vlasov equations, J. Math. Fluid Mech., 18 (2016), 343-360.
doi: 10.1007/s00021-015-0238-1. |
[8] |
Y. Cho, H. J. Choe and H. Kim,
Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.
doi: 10.1016/j.matpur.2003.11.004. |
[9] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equ., 190 (2003), 504-523.
doi: 10.1016/S0022-0396(03)00015-9. |
[10] |
Y. Cho and H. Kim,
On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, manuscripta Math., 120 (2006), 91-129.
doi: 10.1007/s00229-006-0637-y. |
[11] |
S. J. Ding, B. Y. Huang and Q. R. Li,
Global existence and decay estimates for the classical solutions to a compressible fluid-particle interaction model, Acta Mathematica Scientia, 39 (2019), 1525-1537.
doi: 10.1007/s10473-019-0605-8. |
[12] |
S. J. Ding, B. Y. Huang and X. L. Liu, Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum, Journal of Mathematical Physics, 59 (2018), 081507, 19pp.
doi: 10.1063/1.5000296. |
[13] |
D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime, J. Math. Phys., 53 (2012), 033706, 21pp.
doi: 10.1063/1.3693979. |
[14] |
L. Fang and Z. H. Guo, Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, Z. Angew. Math. Phys., 67 (2016), Art. 22, 27 pp.
doi: 10.1007/s00033-016-0619-1. |
[15] |
S. J. Ding, B. Y. Huang and H. Y. Wen,
Global well-posedness of classical solutions to a fluid-particle interaction model in $R^3$, J. Differential Equations, 263 (2017), 8666-8717.
doi: 10.1016/j.jde.2017.08.048. |
[16] |
X. D. Huang, J. Li and Z. P. Xin,
Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure. Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[17] |
B. Y. Huang, J. R. Huang and H. Y. Wen, Low Mach number limit of the compressible Navier-Stokes-Smoluchowski equations in multi-dimensions, J. Math. Phys., 60 (2019), 061501, 20pp.
doi: 10.1063/1.5089229. |
[18] |
B. Y. Huang, S. J. Ding and H. Y. Wen,
Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum, Discrete Contin. Dyn. Syst S., 9 (2016), 1717-1752.
doi: 10.3934/dcdss.2016072. |
[19] |
B. K. Huang, L. Q. Liu and L. Zhang,
On the existence of global strong solutions to 2D compressible Navier-Stokes-Smoluchowski equations with large initial data, Nonlinear Analysis: Real World Applications, 49 (2019), 169-195.
doi: 10.1016/j.nonrwa.2019.03.005. |
[20] |
P. Jiang,
Global well-posedness and large time behavior of classical solutions to the Vlasov-Fokker-Planck and magnetohydrodynamics equations, J. Differential Equations, 262 (2017), 2961-2986.
doi: 10.1016/j.jde.2016.11.020. |
[21] |
Q. S. Jiu, Y. Wang and Z. P. Xin,
Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521.
doi: 10.1007/s00021-014-0171-8. |
[22] |
Q. S. Jiu, Y. Wang and Z. P. Xin,
Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differ. Eqs., 255 (2013), 351-404.
doi: 10.1016/j.jde.2013.04.014. |
[23] |
P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible models Oxford University Press, Oxford, 1998.
![]() |
[24] |
J. Li and Z. P. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Annals of PDE, 5 (2019), Paper No. 7, 37 pp.
doi: 10.1007/s40818-019-0064-5. |
[25] |
J. Li and Z. L. Liang,
On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.
doi: 10.1016/j.matpur.2014.02.001. |
[26] |
Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime, J. Math. Phys., 54 (2013), 091501, 12pp.
doi: 10.1063/1.4820446. |
[27] |
H. Y. Wen and L. M. Zhu,
Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, Journal of Differential Equations, 264 (2018), 2377-2406.
doi: 10.1016/j.jde.2017.10.027. |
show all references
References:
[1] |
J. Ballew,
Low Mach number limits to the Navier-Stokes-Smoluchowski system. Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 301-308.
|
[2] |
J. Ballew, Mathematical Topics in Fluid-Particle Interaction, Ph.D thesis, University of Maryland, USA, 2014. |
[3] |
J. Ballew and K. Trivisa,
Weakly dissipative solutions and weak strong uniqueness for the Navier Stokes Smoluchowski system, Nonlinear Analysis Series A: Theory, Methods Applications, 91 (2013), 1-19.
doi: 10.1016/j.na.2013.06.002. |
[4] |
J. A. Carrillo and T. Goudon,
Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.
doi: 10.1080/03605300500394389. |
[5] |
J. A. Carrillo, T. Karper and K. Trivisa,
On the dynamics of a fluid-particle interaction model: The bubbling regime, Nonlinear Anal., 74 (2011), 2778-2801.
doi: 10.1016/j.na.2010.12.031. |
[6] |
Y. S. Chen, S. J. Ding and W. J. Wang,
Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Cont. Dyn. Serious A., 36 (2016), 5287-5307.
doi: 10.3934/dcds.2016032. |
[7] |
R. M. Chen, J. L. Hu and D. H. Wang,
Global weak solutions to the magnetohydrodynamic and Vlasov equations, J. Math. Fluid Mech., 18 (2016), 343-360.
doi: 10.1007/s00021-015-0238-1. |
[8] |
Y. Cho, H. J. Choe and H. Kim,
Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.
doi: 10.1016/j.matpur.2003.11.004. |
[9] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equ., 190 (2003), 504-523.
doi: 10.1016/S0022-0396(03)00015-9. |
[10] |
Y. Cho and H. Kim,
On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, manuscripta Math., 120 (2006), 91-129.
doi: 10.1007/s00229-006-0637-y. |
[11] |
S. J. Ding, B. Y. Huang and Q. R. Li,
Global existence and decay estimates for the classical solutions to a compressible fluid-particle interaction model, Acta Mathematica Scientia, 39 (2019), 1525-1537.
doi: 10.1007/s10473-019-0605-8. |
[12] |
S. J. Ding, B. Y. Huang and X. L. Liu, Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum, Journal of Mathematical Physics, 59 (2018), 081507, 19pp.
doi: 10.1063/1.5000296. |
[13] |
D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime, J. Math. Phys., 53 (2012), 033706, 21pp.
doi: 10.1063/1.3693979. |
[14] |
L. Fang and Z. H. Guo, Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, Z. Angew. Math. Phys., 67 (2016), Art. 22, 27 pp.
doi: 10.1007/s00033-016-0619-1. |
[15] |
S. J. Ding, B. Y. Huang and H. Y. Wen,
Global well-posedness of classical solutions to a fluid-particle interaction model in $R^3$, J. Differential Equations, 263 (2017), 8666-8717.
doi: 10.1016/j.jde.2017.08.048. |
[16] |
X. D. Huang, J. Li and Z. P. Xin,
Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure. Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[17] |
B. Y. Huang, J. R. Huang and H. Y. Wen, Low Mach number limit of the compressible Navier-Stokes-Smoluchowski equations in multi-dimensions, J. Math. Phys., 60 (2019), 061501, 20pp.
doi: 10.1063/1.5089229. |
[18] |
B. Y. Huang, S. J. Ding and H. Y. Wen,
Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum, Discrete Contin. Dyn. Syst S., 9 (2016), 1717-1752.
doi: 10.3934/dcdss.2016072. |
[19] |
B. K. Huang, L. Q. Liu and L. Zhang,
On the existence of global strong solutions to 2D compressible Navier-Stokes-Smoluchowski equations with large initial data, Nonlinear Analysis: Real World Applications, 49 (2019), 169-195.
doi: 10.1016/j.nonrwa.2019.03.005. |
[20] |
P. Jiang,
Global well-posedness and large time behavior of classical solutions to the Vlasov-Fokker-Planck and magnetohydrodynamics equations, J. Differential Equations, 262 (2017), 2961-2986.
doi: 10.1016/j.jde.2016.11.020. |
[21] |
Q. S. Jiu, Y. Wang and Z. P. Xin,
Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521.
doi: 10.1007/s00021-014-0171-8. |
[22] |
Q. S. Jiu, Y. Wang and Z. P. Xin,
Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differ. Eqs., 255 (2013), 351-404.
doi: 10.1016/j.jde.2013.04.014. |
[23] |
P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible models Oxford University Press, Oxford, 1998.
![]() |
[24] |
J. Li and Z. P. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Annals of PDE, 5 (2019), Paper No. 7, 37 pp.
doi: 10.1007/s40818-019-0064-5. |
[25] |
J. Li and Z. L. Liang,
On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.
doi: 10.1016/j.matpur.2014.02.001. |
[26] |
Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime, J. Math. Phys., 54 (2013), 091501, 12pp.
doi: 10.1063/1.4820446. |
[27] |
H. Y. Wen and L. M. Zhu,
Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, Journal of Differential Equations, 264 (2018), 2377-2406.
doi: 10.1016/j.jde.2017.10.027. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[3] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[4] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[5] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[6] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[7] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[8] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[9] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[10] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[11] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[12] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[13] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[14] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[15] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[16] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[17] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[18] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[19] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[20] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]