doi: 10.3934/dcdsb.2021042
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $

1. 

South China Research Center for Applied Mathematics and Interdisciplinary Studies and School of Mathematical Sciences, South China Normal University Guangzhou, 510631, China

2. 

School of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China

3. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

* Corresponding author: Bingyuan Huang

Received  December 2019 Early access February 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China (Nos. 11371152, 11771155, 11571117, 11871005), the Natural Science Foundation of Guangdong Province (Nos. 2017A030313003, 2019A1515011491), and the Science and Technology Program of Guangzhou (No. 2019050001). The second author is supported by the National Natural Science Foundation of China(Nos. 12026253, 12026244, 11971357), and the Natural Science Foundation of Guangdong Province (No. 2018A030310008)

A fluid-particle interaction model with magnetic field is studied in this paper. When the initial vacuum and the far field vacuum of the fluid and the particles are contained, the constant shear viscosity $ \mu $ and the bulk viscosity $ \lambda $ are $ \mu>0 $ $ \lambda = \rho^\beta $ for any $ \beta\geq 0 $, the strong solutions of the 2D Cauchy problem for the coupled system are established applying the method of weighted estimates in Li-Liang's paper on Navier-Stokes equations.

Citation: Shijin Ding, Bingyuan Huang, Xiaoyan Hou. Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021042
References:
[1]

J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system. Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 301-308.   Google Scholar

[2]

J. Ballew, Mathematical Topics in Fluid-Particle Interaction, Ph.D thesis, University of Maryland, USA, 2014.  Google Scholar

[3]

J. Ballew and K. Trivisa, Weakly dissipative solutions and weak strong uniqueness for the Navier Stokes Smoluchowski system, Nonlinear Analysis Series A: Theory, Methods Applications, 91 (2013), 1-19.  doi: 10.1016/j.na.2013.06.002.  Google Scholar

[4]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.  doi: 10.1080/03605300500394389.  Google Scholar

[5]

J. A. CarrilloT. Karper and K. Trivisa, On the dynamics of a fluid-particle interaction model: The bubbling regime, Nonlinear Anal., 74 (2011), 2778-2801.  doi: 10.1016/j.na.2010.12.031.  Google Scholar

[6]

Y. S. ChenS. J. Ding and W. J. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Cont. Dyn. Serious A., 36 (2016), 5287-5307.  doi: 10.3934/dcds.2016032.  Google Scholar

[7]

R. M. ChenJ. L. Hu and D. H. Wang, Global weak solutions to the magnetohydrodynamic and Vlasov equations, J. Math. Fluid Mech., 18 (2016), 343-360.  doi: 10.1007/s00021-015-0238-1.  Google Scholar

[8]

Y. ChoH. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[9]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equ., 190 (2003), 504-523.  doi: 10.1016/S0022-0396(03)00015-9.  Google Scholar

[10]

Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, manuscripta Math., 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[11]

S. J. DingB. Y. Huang and Q. R. Li, Global existence and decay estimates for the classical solutions to a compressible fluid-particle interaction model, Acta Mathematica Scientia, 39 (2019), 1525-1537.  doi: 10.1007/s10473-019-0605-8.  Google Scholar

[12]

S. J. Ding, B. Y. Huang and X. L. Liu, Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum, Journal of Mathematical Physics, 59 (2018), 081507, 19pp. doi: 10.1063/1.5000296.  Google Scholar

[13]

D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime, J. Math. Phys., 53 (2012), 033706, 21pp. doi: 10.1063/1.3693979.  Google Scholar

[14]

L. Fang and Z. H. Guo, Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, Z. Angew. Math. Phys., 67 (2016), Art. 22, 27 pp. doi: 10.1007/s00033-016-0619-1.  Google Scholar

[15]

S. J. DingB. Y. Huang and H. Y. Wen, Global well-posedness of classical solutions to a fluid-particle interaction model in $R^3$, J. Differential Equations, 263 (2017), 8666-8717.  doi: 10.1016/j.jde.2017.08.048.  Google Scholar

[16]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure. Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[17]

B. Y. Huang, J. R. Huang and H. Y. Wen, Low Mach number limit of the compressible Navier-Stokes-Smoluchowski equations in multi-dimensions, J. Math. Phys., 60 (2019), 061501, 20pp. doi: 10.1063/1.5089229.  Google Scholar

[18]

B. Y. HuangS. J. Ding and H. Y. Wen, Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum, Discrete Contin. Dyn. Syst S., 9 (2016), 1717-1752.  doi: 10.3934/dcdss.2016072.  Google Scholar

[19]

B. K. HuangL. Q. Liu and L. Zhang, On the existence of global strong solutions to 2D compressible Navier-Stokes-Smoluchowski equations with large initial data, Nonlinear Analysis: Real World Applications, 49 (2019), 169-195.  doi: 10.1016/j.nonrwa.2019.03.005.  Google Scholar

[20]

P. Jiang, Global well-posedness and large time behavior of classical solutions to the Vlasov-Fokker-Planck and magnetohydrodynamics equations, J. Differential Equations, 262 (2017), 2961-2986.  doi: 10.1016/j.jde.2016.11.020.  Google Scholar

[21]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521.  doi: 10.1007/s00021-014-0171-8.  Google Scholar

[22]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differ. Eqs., 255 (2013), 351-404.  doi: 10.1016/j.jde.2013.04.014.  Google Scholar

[23] P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible models Oxford University Press, Oxford, 1998.   Google Scholar
[24]

J. Li and Z. P. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Annals of PDE, 5 (2019), Paper No. 7, 37 pp. doi: 10.1007/s40818-019-0064-5.  Google Scholar

[25]

J. Li and Z. L. Liang, On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.  doi: 10.1016/j.matpur.2014.02.001.  Google Scholar

[26]

Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime, J. Math. Phys., 54 (2013), 091501, 12pp. doi: 10.1063/1.4820446.  Google Scholar

[27]

H. Y. Wen and L. M. Zhu, Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, Journal of Differential Equations, 264 (2018), 2377-2406.  doi: 10.1016/j.jde.2017.10.027.  Google Scholar

show all references

References:
[1]

J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system. Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 301-308.   Google Scholar

[2]

J. Ballew, Mathematical Topics in Fluid-Particle Interaction, Ph.D thesis, University of Maryland, USA, 2014.  Google Scholar

[3]

J. Ballew and K. Trivisa, Weakly dissipative solutions and weak strong uniqueness for the Navier Stokes Smoluchowski system, Nonlinear Analysis Series A: Theory, Methods Applications, 91 (2013), 1-19.  doi: 10.1016/j.na.2013.06.002.  Google Scholar

[4]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.  doi: 10.1080/03605300500394389.  Google Scholar

[5]

J. A. CarrilloT. Karper and K. Trivisa, On the dynamics of a fluid-particle interaction model: The bubbling regime, Nonlinear Anal., 74 (2011), 2778-2801.  doi: 10.1016/j.na.2010.12.031.  Google Scholar

[6]

Y. S. ChenS. J. Ding and W. J. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Cont. Dyn. Serious A., 36 (2016), 5287-5307.  doi: 10.3934/dcds.2016032.  Google Scholar

[7]

R. M. ChenJ. L. Hu and D. H. Wang, Global weak solutions to the magnetohydrodynamic and Vlasov equations, J. Math. Fluid Mech., 18 (2016), 343-360.  doi: 10.1007/s00021-015-0238-1.  Google Scholar

[8]

Y. ChoH. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[9]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equ., 190 (2003), 504-523.  doi: 10.1016/S0022-0396(03)00015-9.  Google Scholar

[10]

Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, manuscripta Math., 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[11]

S. J. DingB. Y. Huang and Q. R. Li, Global existence and decay estimates for the classical solutions to a compressible fluid-particle interaction model, Acta Mathematica Scientia, 39 (2019), 1525-1537.  doi: 10.1007/s10473-019-0605-8.  Google Scholar

[12]

S. J. Ding, B. Y. Huang and X. L. Liu, Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum, Journal of Mathematical Physics, 59 (2018), 081507, 19pp. doi: 10.1063/1.5000296.  Google Scholar

[13]

D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime, J. Math. Phys., 53 (2012), 033706, 21pp. doi: 10.1063/1.3693979.  Google Scholar

[14]

L. Fang and Z. H. Guo, Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, Z. Angew. Math. Phys., 67 (2016), Art. 22, 27 pp. doi: 10.1007/s00033-016-0619-1.  Google Scholar

[15]

S. J. DingB. Y. Huang and H. Y. Wen, Global well-posedness of classical solutions to a fluid-particle interaction model in $R^3$, J. Differential Equations, 263 (2017), 8666-8717.  doi: 10.1016/j.jde.2017.08.048.  Google Scholar

[16]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure. Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[17]

B. Y. Huang, J. R. Huang and H. Y. Wen, Low Mach number limit of the compressible Navier-Stokes-Smoluchowski equations in multi-dimensions, J. Math. Phys., 60 (2019), 061501, 20pp. doi: 10.1063/1.5089229.  Google Scholar

[18]

B. Y. HuangS. J. Ding and H. Y. Wen, Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum, Discrete Contin. Dyn. Syst S., 9 (2016), 1717-1752.  doi: 10.3934/dcdss.2016072.  Google Scholar

[19]

B. K. HuangL. Q. Liu and L. Zhang, On the existence of global strong solutions to 2D compressible Navier-Stokes-Smoluchowski equations with large initial data, Nonlinear Analysis: Real World Applications, 49 (2019), 169-195.  doi: 10.1016/j.nonrwa.2019.03.005.  Google Scholar

[20]

P. Jiang, Global well-posedness and large time behavior of classical solutions to the Vlasov-Fokker-Planck and magnetohydrodynamics equations, J. Differential Equations, 262 (2017), 2961-2986.  doi: 10.1016/j.jde.2016.11.020.  Google Scholar

[21]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521.  doi: 10.1007/s00021-014-0171-8.  Google Scholar

[22]

Q. S. JiuY. Wang and Z. P. Xin, Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differ. Eqs., 255 (2013), 351-404.  doi: 10.1016/j.jde.2013.04.014.  Google Scholar

[23] P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible models Oxford University Press, Oxford, 1998.   Google Scholar
[24]

J. Li and Z. P. Xin, Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum, Annals of PDE, 5 (2019), Paper No. 7, 37 pp. doi: 10.1007/s40818-019-0064-5.  Google Scholar

[25]

J. Li and Z. L. Liang, On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.  doi: 10.1016/j.matpur.2014.02.001.  Google Scholar

[26]

Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime, J. Math. Phys., 54 (2013), 091501, 12pp. doi: 10.1063/1.4820446.  Google Scholar

[27]

H. Y. Wen and L. M. Zhu, Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, Journal of Differential Equations, 264 (2018), 2377-2406.  doi: 10.1016/j.jde.2017.10.027.  Google Scholar

[1]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[2]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5383-5405. doi: 10.3934/dcdsb.2020348

[4]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[5]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[6]

Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099

[7]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[8]

Ping Chen, Ting Zhang. A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure & Applied Analysis, 2008, 7 (4) : 987-1016. doi: 10.3934/cpaa.2008.7.987

[9]

Ben Duan, Zhen Luo. Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2543-2564. doi: 10.3934/cpaa.2013.12.2543

[10]

Yuming Qin, Lan Huang, Shuxian Deng, Zhiyong Ma, Xiaoke Su, Xinguang Yang. Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 163-192. doi: 10.3934/dcdss.2009.2.163

[11]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[12]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[13]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[14]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[15]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[16]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

[17]

Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080

[18]

Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459

[19]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[20]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure & Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

2020 Impact Factor: 1.327

Article outline

[Back to Top]