
- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Bifurcation analysis for an in-host Mycobacterium tuberculosis model
Asymptotic stability of two types of traveling waves for some predator-prey models
1. | School of Mathematical Sciences, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China |
2. | Faculty of Engineering, University of Miyazaki, 1-1, Gakuen Kibanadai-nishi, Miyazaki, 880-2192, Japan |
This paper is concerned with the asymptotic stability of wave fronts and oscillatory waves for some predator-prey models. By spectral analysis and applying Evans function method with some numerical simulations, we show that the two types of waves with noncritical speeds are spectrally stable and nonlinearly exponentially stable in some exponentially weighted spaces.
References:
[1] |
L. Allen and T. J. Bridges,
Numerical exterior algebra and the compound matrix method, Numer. Math., 92 (2002), 197-232.
doi: 10.1007/s002110100365. |
[2] |
K. Cheng, S. Hsu and S. Lin,
Some results on global stability of a predator-prey system, J. Math. Biol., 12 (1981), 115-126.
doi: 10.1007/BF00275207. |
[3] |
W. Ding and W. Huang,
Traveling wave solutions for some classes of diffusive predator-prey models, J. Dyn. Diff. Equ., 28 (2016), 1293-1308.
doi: 10.1007/s10884-015-9472-8. |
[4] |
S. Dunbar,
Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112. |
[5] |
S. Dunbar,
Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $\mathbb{R}^4$, Trans. Am. Math. Soc., 286 (1984), 557-594.
doi: 10.2307/1999810. |
[6] |
S. Dunbar,
Traveling waves in diffusive predator-prey equations: Periodic orbits and pointto-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.
doi: 10.1137/0146063. |
[7] |
S. Fu and J. Tsai,
The evolution of traveling waves in a simple isothermal chemical system modeling quadratic autocatalysis with strong decay, J. Differential Equations, 256 (2014), 3335-3364.
doi: 10.1016/j.jde.2014.02.009. |
[8] |
S. Fu and J. Tsai,
Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.
doi: 10.1088/0951-7715/28/12/4389. |
[9] |
R. Gadner and C. K. Jone,
Stability of traveling wave solutions of diffusive predator-prey systems, Trans. Amer. Math. Soc., 327 (1991), 465-524.
doi: 10.1090/S0002-9947-1991-1013331-0. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York-London-Sydney, 1964. |
[11] |
C. Hsu, C. Yang, T. Yang and T. Yang,
Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.
doi: 10.1016/j.jde.2011.11.008. |
[12] |
S. B. Hsu,
On global stability of a predator-prey system, Math. Biosci., 39 (1978), 1-10.
doi: 10.1016/0025-5564(78)90025-1. |
[13] |
S. Hsu and T. Hwang,
Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201. |
[14] |
J. Huang, G. Lu and S. Ruan,
Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.
doi: 10.1007/s00285-002-0171-9. |
[15] |
W. Huang,
Traveling wave solutions for a class of predator-prey systems, J. Dyn. Diff. Equat., 24 (2012), 633-644.
doi: 10.1007/s10884-012-9255-4. |
[16] |
V. S. Ivlev, Experimental Ecology of the Feeding of Fishes, New Haven, CT: Yale University, 1961. Google Scholar |
[17] |
W. Li and S. Wu,
Traveling waves in a diffusive predator-prey model with holling type-III functional response, Chaos Solitons Fract., 37 (2008), 476-486.
doi: 10.1016/j.chaos.2006.09.039. |
[18] |
Y. Li and Y. Wu,
Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems, SIAM J. Math. Anal., 44 (2012), 1474-1521.
doi: 10.1137/100814974. |
[19] |
Y. Li and Y. Wu,
Existence and stability of travelling front solutions for general auto-catalytic chemical reaction systems, Math. Model. Nat. Phenom., 8 (2013), 104-132.
doi: 10.1051/mmnp/20138308. |
[20] |
J. D. Murray, Mathematical Biology. I. An Introduction, 3$^rd$ edition, Springer-Verlag, New York, 2002.
doi: 10.1023/A:1022616217603. |
[21] |
J. D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications, 3$^rd$ edition, Springer-Verlag, New York, 2003. |
[22] |
B. S. Ng and W. H. Reid,
The compound matrix method for ordinary differential systems, J. Comput. Phys., 58 (1985), 209-228.
doi: 10.1016/0021-9991(85)90177-9. |
[23] |
A. Okubo and S. A. Levin, Diffusion and Ecological Problems, Modern Prespectives, Springer, Berlin, 2001.
doi: 10.1007/978-1-4757-4978-6. |
[24] |
B. P. Palka, An Introduction to Complex Function Theory, Springer-Verlag, New York, 1991. |
[25] |
S. Petrovskii and H. Malchow,
Critical phenomena in plankton communities: KISS model revisited, Nonlinear Analysis, 1 (2000), 37-51.
doi: 10.1016/S0362-546X(99)00392-2. |
[26] |
S. Ruan and D. Xiao,
Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000/01), 1445-1472.
doi: 10.1137/s0036139999361896. |
[27] |
L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511615542.![]() ![]() |
[28] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, American Mathematical Society, Providence, 1994.
doi: 10.1090/mmono/140. |
[29] |
Y. Wu and N. Yan,
Stability of travelling waves for autocatalytic reaction systems with strong decay, Discrete Continuous Dynam. Systems - B, 22 (2017), 1601-1633.
doi: 10.3934/dcdsb.2017033. |
[30] |
Y. Wu and X. Zhao,
The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems, Phys. D, 200 (2005), 325-358.
doi: 10.1016/j.physd.2004.11.010. |
[31] |
Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction Diffusion Equation, (in Chinese), second edition, Science Press, Beijing, 2011.
![]() |
show all references
References:
[1] |
L. Allen and T. J. Bridges,
Numerical exterior algebra and the compound matrix method, Numer. Math., 92 (2002), 197-232.
doi: 10.1007/s002110100365. |
[2] |
K. Cheng, S. Hsu and S. Lin,
Some results on global stability of a predator-prey system, J. Math. Biol., 12 (1981), 115-126.
doi: 10.1007/BF00275207. |
[3] |
W. Ding and W. Huang,
Traveling wave solutions for some classes of diffusive predator-prey models, J. Dyn. Diff. Equ., 28 (2016), 1293-1308.
doi: 10.1007/s10884-015-9472-8. |
[4] |
S. Dunbar,
Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112. |
[5] |
S. Dunbar,
Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $\mathbb{R}^4$, Trans. Am. Math. Soc., 286 (1984), 557-594.
doi: 10.2307/1999810. |
[6] |
S. Dunbar,
Traveling waves in diffusive predator-prey equations: Periodic orbits and pointto-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.
doi: 10.1137/0146063. |
[7] |
S. Fu and J. Tsai,
The evolution of traveling waves in a simple isothermal chemical system modeling quadratic autocatalysis with strong decay, J. Differential Equations, 256 (2014), 3335-3364.
doi: 10.1016/j.jde.2014.02.009. |
[8] |
S. Fu and J. Tsai,
Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.
doi: 10.1088/0951-7715/28/12/4389. |
[9] |
R. Gadner and C. K. Jone,
Stability of traveling wave solutions of diffusive predator-prey systems, Trans. Amer. Math. Soc., 327 (1991), 465-524.
doi: 10.1090/S0002-9947-1991-1013331-0. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York-London-Sydney, 1964. |
[11] |
C. Hsu, C. Yang, T. Yang and T. Yang,
Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.
doi: 10.1016/j.jde.2011.11.008. |
[12] |
S. B. Hsu,
On global stability of a predator-prey system, Math. Biosci., 39 (1978), 1-10.
doi: 10.1016/0025-5564(78)90025-1. |
[13] |
S. Hsu and T. Hwang,
Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201. |
[14] |
J. Huang, G. Lu and S. Ruan,
Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.
doi: 10.1007/s00285-002-0171-9. |
[15] |
W. Huang,
Traveling wave solutions for a class of predator-prey systems, J. Dyn. Diff. Equat., 24 (2012), 633-644.
doi: 10.1007/s10884-012-9255-4. |
[16] |
V. S. Ivlev, Experimental Ecology of the Feeding of Fishes, New Haven, CT: Yale University, 1961. Google Scholar |
[17] |
W. Li and S. Wu,
Traveling waves in a diffusive predator-prey model with holling type-III functional response, Chaos Solitons Fract., 37 (2008), 476-486.
doi: 10.1016/j.chaos.2006.09.039. |
[18] |
Y. Li and Y. Wu,
Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems, SIAM J. Math. Anal., 44 (2012), 1474-1521.
doi: 10.1137/100814974. |
[19] |
Y. Li and Y. Wu,
Existence and stability of travelling front solutions for general auto-catalytic chemical reaction systems, Math. Model. Nat. Phenom., 8 (2013), 104-132.
doi: 10.1051/mmnp/20138308. |
[20] |
J. D. Murray, Mathematical Biology. I. An Introduction, 3$^rd$ edition, Springer-Verlag, New York, 2002.
doi: 10.1023/A:1022616217603. |
[21] |
J. D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications, 3$^rd$ edition, Springer-Verlag, New York, 2003. |
[22] |
B. S. Ng and W. H. Reid,
The compound matrix method for ordinary differential systems, J. Comput. Phys., 58 (1985), 209-228.
doi: 10.1016/0021-9991(85)90177-9. |
[23] |
A. Okubo and S. A. Levin, Diffusion and Ecological Problems, Modern Prespectives, Springer, Berlin, 2001.
doi: 10.1007/978-1-4757-4978-6. |
[24] |
B. P. Palka, An Introduction to Complex Function Theory, Springer-Verlag, New York, 1991. |
[25] |
S. Petrovskii and H. Malchow,
Critical phenomena in plankton communities: KISS model revisited, Nonlinear Analysis, 1 (2000), 37-51.
doi: 10.1016/S0362-546X(99)00392-2. |
[26] |
S. Ruan and D. Xiao,
Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000/01), 1445-1472.
doi: 10.1137/s0036139999361896. |
[27] |
L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511615542.![]() ![]() |
[28] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, American Mathematical Society, Providence, 1994.
doi: 10.1090/mmono/140. |
[29] |
Y. Wu and N. Yan,
Stability of travelling waves for autocatalytic reaction systems with strong decay, Discrete Continuous Dynam. Systems - B, 22 (2017), 1601-1633.
doi: 10.3934/dcdsb.2017033. |
[30] |
Y. Wu and X. Zhao,
The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems, Phys. D, 200 (2005), 325-358.
doi: 10.1016/j.physd.2004.11.010. |
[31] |
Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction Diffusion Equation, (in Chinese), second edition, Science Press, Beijing, 2011.
![]() |






[1] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[2] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[3] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[4] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[5] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[6] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[7] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[8] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[9] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[10] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[11] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[12] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[13] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[14] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[15] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[16] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[17] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[18] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[19] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[20] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]