doi: 10.3934/dcdsb.2021049

Limit cycles and global dynamic of planar cubic semi-quasi-homogeneous systems

1. 

School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China

2. 

School of Mathematical Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China

* Corresponding author: Haihua Liang

Received  September 2020 Revised  December 2020 Published  February 2021

Fund Project: The second author is supported by the NNSF of China grant 11771101, by the major research program of colleges and universities in Guangdong Province grant 2017KZDXM054, and by the Science and Technology Program of Guangzhou of China grant 201805010001. The third author is partially supported by NNSF of China grant 11671254, 11871334 and 12071284

Denote by CH, CSH, CQH, and CSQH the planar cubic homogeneous, cubic semi-homogeneous, cubic quasi-homogeneous and cubic semi-quasi-homogeneous differential systems, respectively. The problems on limit cycles and global dynamics of these systems have been solved for CH, and partially for CSH. This paper studies the same problems for CQH and CSQH. We prove that CQH have no limit cycles and CSQH can have at most one limit cycle with the limit cycle realizable. Moreover, we classify all the global phase portraits of CSQH.

Citation: Zecen He, Haihua Liang, Xiang Zhang. Limit cycles and global dynamic of planar cubic semi-quasi-homogeneous systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021049
References:
[1]

A. AlgabaC. Garcia and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 41 (2011), 1-22.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[2]

W. AzizJ. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[3]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.   Google Scholar

[4]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.  doi: 10.1007/s12346-011-0052-y.  Google Scholar

[5]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007), 1284-1298.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[6]

A. CimaA. Gasull and F. Ma$\tilde{n}$osas, Cyclicity of a family of vector fields, J. Math. Anal. Appl., 196 (1995), 921-937.  doi: 10.1006/jmaa.1995.1451.  Google Scholar

[7]

A. CimaA. Gasull and F. Ma$\tilde{n}$osas, Limit cycles for vector fields with homogeneous components, Appl. Math. (Warsaw), 24 (1997), 281-287.  doi: 10.4064/am-24-3-281-287.  Google Scholar

[8]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[9]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006. doi: 10.1007/978-3-540-32902-2.  Google Scholar

[10]

B. GarcíaJ. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

G. HuangG. Feng and X. Zhang, A global topological structure of a class of cubic quasi-homogeneous vector fields, Acta Math. Sci. A, 34 (2014), 419-425.   Google Scholar

[12]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[13]

J. Llibre and C. Pessoa, On the centers of the weight-homogeneous polynomial vector fields on the plane, J. Math. Anal. Appl., 359 (2009), 722-730.  doi: 10.1016/j.jmaa.2009.06.036.  Google Scholar

[14]

B. Qiu and H. Liang, Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.  doi: 10.1007/s12346-016-0199-7.  Google Scholar

[15]

Y. TangL. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.  doi: 10.3934/dcds.2015.35.2177.  Google Scholar

[16]

Y. Tian and H. Liang, Planar semi-quasi homogeneous polynomial differential systems with a given degree, Qual. Theory Dyn. Syst., 18 (2019), 841-871.  doi: 10.1007/s12346-019-00316-w.  Google Scholar

[17]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Volume 101 of Trans. of Mathematical Monographs, Am. Math. Soc. Providence, RI, 1992. Google Scholar

[18]

Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields, J. Math. Anal. Appl., 397 (2013), 276-284.  doi: 10.1016/j.jmaa.2012.07.060.  Google Scholar

show all references

References:
[1]

A. AlgabaC. Garcia and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 41 (2011), 1-22.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[2]

W. AzizJ. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[3]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.   Google Scholar

[4]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.  doi: 10.1007/s12346-011-0052-y.  Google Scholar

[5]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007), 1284-1298.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[6]

A. CimaA. Gasull and F. Ma$\tilde{n}$osas, Cyclicity of a family of vector fields, J. Math. Anal. Appl., 196 (1995), 921-937.  doi: 10.1006/jmaa.1995.1451.  Google Scholar

[7]

A. CimaA. Gasull and F. Ma$\tilde{n}$osas, Limit cycles for vector fields with homogeneous components, Appl. Math. (Warsaw), 24 (1997), 281-287.  doi: 10.4064/am-24-3-281-287.  Google Scholar

[8]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[9]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006. doi: 10.1007/978-3-540-32902-2.  Google Scholar

[10]

B. GarcíaJ. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

G. HuangG. Feng and X. Zhang, A global topological structure of a class of cubic quasi-homogeneous vector fields, Acta Math. Sci. A, 34 (2014), 419-425.   Google Scholar

[12]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[13]

J. Llibre and C. Pessoa, On the centers of the weight-homogeneous polynomial vector fields on the plane, J. Math. Anal. Appl., 359 (2009), 722-730.  doi: 10.1016/j.jmaa.2009.06.036.  Google Scholar

[14]

B. Qiu and H. Liang, Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.  doi: 10.1007/s12346-016-0199-7.  Google Scholar

[15]

Y. TangL. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.  doi: 10.3934/dcds.2015.35.2177.  Google Scholar

[16]

Y. Tian and H. Liang, Planar semi-quasi homogeneous polynomial differential systems with a given degree, Qual. Theory Dyn. Syst., 18 (2019), 841-871.  doi: 10.1007/s12346-019-00316-w.  Google Scholar

[17]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Volume 101 of Trans. of Mathematical Monographs, Am. Math. Soc. Providence, RI, 1992. Google Scholar

[18]

Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields, J. Math. Anal. Appl., 397 (2013), 276-284.  doi: 10.1016/j.jmaa.2012.07.060.  Google Scholar

Figure 1.  The global phase portraits of system (2) with $ a<-1 $
Figure 2.  The topological equivalence classes of the global phase portraits of planar cubic semi-quasi-homogeneous systems
Figure 6.  The global phase portraits of systems $ (A_{1}) $ and $ (B_{1, k})\ (k = 1, 2, 3) $
Figure 5.  Local phase portrait of system (10) at the origin
Figure 7.  The phase portrait of systems $ (M^{\pm}_{1, k, l}) $
Figure 8.  The global phase portraits of systems $ (A^{\pm}_{2, k}) $
Figure 9.  The global phase portraits of systems $ (C_{1, k}), $ $ (D_1), $ $ (E_{1, k}) $ and $ (F_{1}) $
Figure 10.  The global phase portraits of systems $ (G^{\pm}_{1, k, l}) $
Figure 11.  The global phase portraits of systems $ (H^{\pm}_{1, k}) $ and $ (I^{\pm}_{1, k}) $
Figure 12.  The phase portraits of systems $ (J^{\pm}_{1, k, l}) $ and $ L^{\pm}_{1, k, l}) $
Figure 13.  The global phase portraits of systems $ (B^{\pm}_{2, k}) $
Figure 14.  The global phase portraits of systems $ (C_{2, 1}) $ and $ (C^{\pm}_{2, 2}) $
Figure 15.  The global phase portraits of systems $ (D^{\pm}_{2, k}) $
Figure 16.  The global phase portraits of systems $ (E_{2, k}) $
Figure 17.  The global phase portraits of systems $ (F_{2, k}) $
Table 1.  The known results about the CH, CSH, CQH, and CSQH before this paper
Type of cubic systems The maximum number of limit cycles The global dynamics
Homogeneous 0 completed
Semi-Homogeneous ≥ 1 for some subclasses
Quasi-Homogeneous ? for some subclasses
Semi-Quasi-Homogeneous ? ?
Type of cubic systems The maximum number of limit cycles The global dynamics
Homogeneous 0 completed
Semi-Homogeneous ≥ 1 for some subclasses
Quasi-Homogeneous ? for some subclasses
Semi-Quasi-Homogeneous ? ?
Table 2.  The known results about the CH, CSH, CQH, and CSQH after this paper
Type of cubic systems The maximum number of limit cycles The global dynamics
Homogeneous 0 completed
Semi-Homogeneous 1 for some subclasses
Quasi-Homogeneous 0 for some subclasses
Semi-Quasi-Homogeneous 1 completed
Type of cubic systems The maximum number of limit cycles The global dynamics
Homogeneous 0 completed
Semi-Homogeneous 1 for some subclasses
Quasi-Homogeneous 0 for some subclasses
Semi-Quasi-Homogeneous 1 completed
[1]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[2]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[3]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[6]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[7]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[8]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[9]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[12]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[13]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[14]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[17]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[18]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[19]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[20]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (23)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]