Type of cubic systems | The maximum number of limit cycles | The global dynamics |
Homogeneous | 0 | completed |
Semi-Homogeneous | ≥ 1 | for some subclasses |
Quasi-Homogeneous | ? | for some subclasses |
Semi-Quasi-Homogeneous | ? | ? |
Denote by CH, CSH, CQH, and CSQH the planar cubic homogeneous, cubic semi-homogeneous, cubic quasi-homogeneous and cubic semi-quasi-homogeneous differential systems, respectively. The problems on limit cycles and global dynamics of these systems have been solved for CH, and partially for CSH. This paper studies the same problems for CQH and CSQH. We prove that CQH have no limit cycles and CSQH can have at most one limit cycle with the limit cycle realizable. Moreover, we classify all the global phase portraits of CSQH.
Citation: |
Table 1. The known results about the CH, CSH, CQH, and CSQH before this paper
Type of cubic systems | The maximum number of limit cycles | The global dynamics |
Homogeneous | 0 | completed |
Semi-Homogeneous | ≥ 1 | for some subclasses |
Quasi-Homogeneous | ? | for some subclasses |
Semi-Quasi-Homogeneous | ? | ? |
Table 2. The known results about the CH, CSH, CQH, and CSQH after this paper
Type of cubic systems | The maximum number of limit cycles | The global dynamics |
Homogeneous | 0 | completed |
Semi-Homogeneous | ≥ | 1 for some subclasses |
Quasi-Homogeneous | 0 | for some subclasses |
Semi-Quasi-Homogeneous | 1 | completed |
[1] |
A. Algaba, C. Garcia and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 41 (2011), 1-22.
doi: 10.1216/RMJ-2011-41-1-1.![]() ![]() ![]() |
[2] |
W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006.![]() ![]() ![]() |
[3] |
L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.
![]() |
[4] |
L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.
doi: 10.1007/s12346-011-0052-y.![]() ![]() ![]() |
[5] |
L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007), 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066.![]() ![]() ![]() |
[6] |
A. Cima, A. Gasull and F. Ma$\tilde{n}$osas, Cyclicity of a family of vector fields, J. Math. Anal. Appl., 196 (1995), 921-937.
doi: 10.1006/jmaa.1995.1451.![]() ![]() ![]() |
[7] |
A. Cima, A. Gasull and F. Ma$\tilde{n}$osas, Limit cycles for vector fields with homogeneous components, Appl. Math. (Warsaw), 24 (1997), 281-287.
doi: 10.4064/am-24-3-281-287.![]() ![]() ![]() |
[8] |
A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N.![]() ![]() ![]() |
[9] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-32902-2.![]() ![]() ![]() |
[10] |
B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032.![]() ![]() ![]() |
[11] |
G. Huang, G. Feng and X. Zhang, A global topological structure of a class of cubic quasi-homogeneous vector fields, Acta Math. Sci. A, 34 (2014), 419-425.
![]() ![]() |
[12] |
H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8.![]() ![]() ![]() |
[13] |
J. Llibre and C. Pessoa, On the centers of the weight-homogeneous polynomial vector fields on the plane, J. Math. Anal. Appl., 359 (2009), 722-730.
doi: 10.1016/j.jmaa.2009.06.036.![]() ![]() ![]() |
[14] |
B. Qiu and H. Liang, Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.
doi: 10.1007/s12346-016-0199-7.![]() ![]() ![]() |
[15] |
Y. Tang, L. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.
doi: 10.3934/dcds.2015.35.2177.![]() ![]() ![]() |
[16] |
Y. Tian and H. Liang, Planar semi-quasi homogeneous polynomial differential systems with a given degree, Qual. Theory Dyn. Syst., 18 (2019), 841-871.
doi: 10.1007/s12346-019-00316-w.![]() ![]() ![]() |
[17] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Volume 101 of Trans. of Mathematical Monographs, Am. Math. Soc. Providence, RI, 1992.
![]() |
[18] |
Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields, J. Math. Anal. Appl., 397 (2013), 276-284.
doi: 10.1016/j.jmaa.2012.07.060.![]() ![]() ![]() |
The global phase portraits of system (2) with
The topological equivalence classes of the global phase portraits of planar cubic semi-quasi-homogeneous systems
The global phase portraits of systems
Local phase portrait of system (10) at the origin
The phase portrait of systems
The global phase portraits of systems
The global phase portraits of systems
The global phase portraits of systems
The global phase portraits of systems
The phase portraits of systems
The global phase portraits of systems
The global phase portraits of systems
The global phase portraits of systems
The global phase portraits of systems
The global phase portraits of systems