
-
Previous Article
Large-time behavior of matured population in an age-structured model
- DCDS-B Home
- This Issue
-
Next Article
Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system
Limit cycles and global dynamic of planar cubic semi-quasi-homogeneous systems
1. | School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China |
2. | School of Mathematical Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China |
Denote by CH, CSH, CQH, and CSQH the planar cubic homogeneous, cubic semi-homogeneous, cubic quasi-homogeneous and cubic semi-quasi-homogeneous differential systems, respectively. The problems on limit cycles and global dynamics of these systems have been solved for CH, and partially for CSH. This paper studies the same problems for CQH and CSQH. We prove that CQH have no limit cycles and CSQH can have at most one limit cycle with the limit cycle realizable. Moreover, we classify all the global phase portraits of CSQH.
References:
[1] |
A. Algaba, C. Garcia and M. Reyes,
Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 41 (2011), 1-22.
doi: 10.1216/RMJ-2011-41-1-1. |
[2] |
W. Aziz, J. Llibre and C. Pantazi,
Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006. |
[3] |
L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363. Google Scholar |
[4] |
L. Cairó and J. Llibre,
Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.
doi: 10.1007/s12346-011-0052-y. |
[5] |
L. Cairó and J. Llibre,
Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007), 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066. |
[6] |
A. Cima, A. Gasull and F. Ma$\tilde{n}$osas,
Cyclicity of a family of vector fields, J. Math. Anal. Appl., 196 (1995), 921-937.
doi: 10.1006/jmaa.1995.1451. |
[7] |
A. Cima, A. Gasull and F. Ma$\tilde{n}$osas,
Limit cycles for vector fields with homogeneous components, Appl. Math. (Warsaw), 24 (1997), 281-287.
doi: 10.4064/am-24-3-281-287. |
[8] |
A. Cima and J. Llibre,
Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N. |
[9] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-32902-2. |
[10] |
B. García, J. Llibre and J. S. Pérez del Río,
Planar quasi-homogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
G. Huang, G. Feng and X. Zhang,
A global topological structure of a class of cubic quasi-homogeneous vector fields, Acta Math. Sci. A, 34 (2014), 419-425.
|
[12] |
H. Liang, J. Huang and Y. Zhao,
Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8. |
[13] |
J. Llibre and C. Pessoa,
On the centers of the weight-homogeneous polynomial vector fields on the plane, J. Math. Anal. Appl., 359 (2009), 722-730.
doi: 10.1016/j.jmaa.2009.06.036. |
[14] |
B. Qiu and H. Liang,
Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.
doi: 10.1007/s12346-016-0199-7. |
[15] |
Y. Tang, L. Wang and X. Zhang,
Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.
doi: 10.3934/dcds.2015.35.2177. |
[16] |
Y. Tian and H. Liang,
Planar semi-quasi homogeneous polynomial differential systems with a given degree, Qual. Theory Dyn. Syst., 18 (2019), 841-871.
doi: 10.1007/s12346-019-00316-w. |
[17] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Volume 101 of Trans. of Mathematical Monographs, Am. Math. Soc. Providence, RI, 1992. Google Scholar |
[18] |
Y. Zhao,
Limit cycles for planar semi-quasi-homogeneous polynomial vector fields, J. Math. Anal. Appl., 397 (2013), 276-284.
doi: 10.1016/j.jmaa.2012.07.060. |
show all references
References:
[1] |
A. Algaba, C. Garcia and M. Reyes,
Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 41 (2011), 1-22.
doi: 10.1216/RMJ-2011-41-1-1. |
[2] |
W. Aziz, J. Llibre and C. Pantazi,
Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006. |
[3] |
L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363. Google Scholar |
[4] |
L. Cairó and J. Llibre,
Phase portraits of planar semi-homogeneous vector fields (Ⅲ), Qual. Theory Dyn. Syst., 10 (2011), 203-246.
doi: 10.1007/s12346-011-0052-y. |
[5] |
L. Cairó and J. Llibre,
Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007), 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066. |
[6] |
A. Cima, A. Gasull and F. Ma$\tilde{n}$osas,
Cyclicity of a family of vector fields, J. Math. Anal. Appl., 196 (1995), 921-937.
doi: 10.1006/jmaa.1995.1451. |
[7] |
A. Cima, A. Gasull and F. Ma$\tilde{n}$osas,
Limit cycles for vector fields with homogeneous components, Appl. Math. (Warsaw), 24 (1997), 281-287.
doi: 10.4064/am-24-3-281-287. |
[8] |
A. Cima and J. Llibre,
Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N. |
[9] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-32902-2. |
[10] |
B. García, J. Llibre and J. S. Pérez del Río,
Planar quasi-homogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
G. Huang, G. Feng and X. Zhang,
A global topological structure of a class of cubic quasi-homogeneous vector fields, Acta Math. Sci. A, 34 (2014), 419-425.
|
[12] |
H. Liang, J. Huang and Y. Zhao,
Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8. |
[13] |
J. Llibre and C. Pessoa,
On the centers of the weight-homogeneous polynomial vector fields on the plane, J. Math. Anal. Appl., 359 (2009), 722-730.
doi: 10.1016/j.jmaa.2009.06.036. |
[14] |
B. Qiu and H. Liang,
Classification of global phase portrait of planar quintic quasi-homogeneous coprime polynomial systems, Qual. Theory Dyn. Syst., 16 (2017), 417-451.
doi: 10.1007/s12346-016-0199-7. |
[15] |
Y. Tang, L. Wang and X. Zhang,
Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.
doi: 10.3934/dcds.2015.35.2177. |
[16] |
Y. Tian and H. Liang,
Planar semi-quasi homogeneous polynomial differential systems with a given degree, Qual. Theory Dyn. Syst., 18 (2019), 841-871.
doi: 10.1007/s12346-019-00316-w. |
[17] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Volume 101 of Trans. of Mathematical Monographs, Am. Math. Soc. Providence, RI, 1992. Google Scholar |
[18] |
Y. Zhao,
Limit cycles for planar semi-quasi-homogeneous polynomial vector fields, J. Math. Anal. Appl., 397 (2013), 276-284.
doi: 10.1016/j.jmaa.2012.07.060. |











Type of cubic systems | The maximum number of limit cycles | The global dynamics |
Homogeneous | 0 | completed |
Semi-Homogeneous | ≥ 1 | for some subclasses |
Quasi-Homogeneous | ? | for some subclasses |
Semi-Quasi-Homogeneous | ? | ? |
Type of cubic systems | The maximum number of limit cycles | The global dynamics |
Homogeneous | 0 | completed |
Semi-Homogeneous | ≥ 1 | for some subclasses |
Quasi-Homogeneous | ? | for some subclasses |
Semi-Quasi-Homogeneous | ? | ? |
Type of cubic systems | The maximum number of limit cycles | The global dynamics |
Homogeneous | 0 | completed |
Semi-Homogeneous | ≥ | 1 for some subclasses |
Quasi-Homogeneous | 0 | for some subclasses |
Semi-Quasi-Homogeneous | 1 | completed |
Type of cubic systems | The maximum number of limit cycles | The global dynamics |
Homogeneous | 0 | completed |
Semi-Homogeneous | ≥ | 1 for some subclasses |
Quasi-Homogeneous | 0 | for some subclasses |
Semi-Quasi-Homogeneous | 1 | completed |
[1] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[2] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[3] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[4] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[5] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[6] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[7] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[8] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[9] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[10] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[11] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[12] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[13] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[14] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[15] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[16] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[17] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[18] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[19] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[20] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]