doi: 10.3934/dcdsb.2021051

Existence of global weak solutions of $ p $-Navier-Stokes equations

1. 

Department of Mathematics and Department of Physics, Duke University, Durham, NC 27708, USA

2. 

School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China, and, Department of Physics, Duke University, Durham, NC 27708, USA

* Corresponding author: Zhaoyun Zhang

Received  November 2020 Revised  January 2021 Published  February 2021

This paper investigates the global existence of weak solutions for the incompressible $ p $-Navier-Stokes equations in $ \mathbb{R}^d $ $ (2\leq d\leq p) $. The $ p $-Navier-Stokes equations are obtained by adding viscosity term to the $ p $-Euler equations. The diffusion added is represented by the $ p $-Laplacian of velocity and the $ p $-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-$ p $ distances with constraint density to be characteristic functions.

Citation: Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021051
References:
[1] D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.   Google Scholar
[2]

D. Breit, Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.  doi: 10.1007/s00021-015-0203-z.  Google Scholar

[3]

F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.  doi: 10.1090/S0002-9904-1963-11068-X.  Google Scholar

[4]

F. E. Browder, Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.  doi: 10.2307/1970660.  Google Scholar

[5]

X. ChenA. Jüngel and J. -G Liu, A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.  doi: 10.1007/s10440-013-9858-8.  Google Scholar

[6]

X. Chen and J. -G Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.  doi: 10.1016/j.jde.2013.01.005.  Google Scholar

[7]

X. Chen and J.-G Liu, Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.  doi: 10.1137/120887850.  Google Scholar

[8]

K. ChengC. Wang and S. M. Wise, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.  doi: 10.4208/cicp.2019.js60.10.  Google Scholar

[9]

W. Cong and J.-G. Liu, A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.  doi: 10.3934/krm.2016012.  Google Scholar

[10]

E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.  doi: 10.1007/BF00400111.  Google Scholar

[11]

M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.  doi: 10.1016/j.na.2011.12.004.  Google Scholar

[12]

W. FengA. J. SalgadoC. Wang and S. M. Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.  doi: 10.1016/j.jcp.2016.12.046.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.  Google Scholar

[14]

P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.  doi: 10.1007/BF02392210.  Google Scholar

[15]

J. Leray and J.-L. Lions, Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.   Google Scholar

[16]

L. Li and J.-G. Liu, $p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.  doi: 10.1016/j.jde.2017.12.023.  Google Scholar

[17]

E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[18]

P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019. doi: 10.1007/978-3-030-14501-9.  Google Scholar

[19]

A. Matas and J. Merker, Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.  doi: 10.1007/s10492-012-0004-0.  Google Scholar

[20]

G. J. Minty, On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.  doi: 10.1073/pnas.50.6.1038.  Google Scholar

[21]

G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.  doi: 10.1215/S0012-7094-62-02933-2.  Google Scholar

[22]

J. ShenC. WangX. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.  doi: 10.1137/110822839.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

C. WangX. Wang and S. M. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.  doi: 10.3934/dcds.2010.28.405.  Google Scholar

show all references

References:
[1] D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.   Google Scholar
[2]

D. Breit, Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.  doi: 10.1007/s00021-015-0203-z.  Google Scholar

[3]

F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.  doi: 10.1090/S0002-9904-1963-11068-X.  Google Scholar

[4]

F. E. Browder, Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.  doi: 10.2307/1970660.  Google Scholar

[5]

X. ChenA. Jüngel and J. -G Liu, A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.  doi: 10.1007/s10440-013-9858-8.  Google Scholar

[6]

X. Chen and J. -G Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.  doi: 10.1016/j.jde.2013.01.005.  Google Scholar

[7]

X. Chen and J.-G Liu, Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.  doi: 10.1137/120887850.  Google Scholar

[8]

K. ChengC. Wang and S. M. Wise, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.  doi: 10.4208/cicp.2019.js60.10.  Google Scholar

[9]

W. Cong and J.-G. Liu, A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.  doi: 10.3934/krm.2016012.  Google Scholar

[10]

E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.  doi: 10.1007/BF00400111.  Google Scholar

[11]

M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.  doi: 10.1016/j.na.2011.12.004.  Google Scholar

[12]

W. FengA. J. SalgadoC. Wang and S. M. Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.  doi: 10.1016/j.jcp.2016.12.046.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.  Google Scholar

[14]

P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.  doi: 10.1007/BF02392210.  Google Scholar

[15]

J. Leray and J.-L. Lions, Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.   Google Scholar

[16]

L. Li and J.-G. Liu, $p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.  doi: 10.1016/j.jde.2017.12.023.  Google Scholar

[17]

E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[18]

P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019. doi: 10.1007/978-3-030-14501-9.  Google Scholar

[19]

A. Matas and J. Merker, Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.  doi: 10.1007/s10492-012-0004-0.  Google Scholar

[20]

G. J. Minty, On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.  doi: 10.1073/pnas.50.6.1038.  Google Scholar

[21]

G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.  doi: 10.1215/S0012-7094-62-02933-2.  Google Scholar

[22]

J. ShenC. WangX. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.  doi: 10.1137/110822839.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

C. WangX. Wang and S. M. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.  doi: 10.3934/dcds.2010.28.405.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[4]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[5]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[6]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[10]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[13]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[17]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[18]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[19]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[20]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (21)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]