-
Previous Article
Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system
- DCDS-B Home
- This Issue
-
Next Article
Parameter identification on Abelian integrals to achieve Chebyshev property
Existence of global weak solutions of $ p $-Navier-Stokes equations
1. | Department of Mathematics and Department of Physics, Duke University, Durham, NC 27708, USA |
2. | School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China, and, Department of Physics, Duke University, Durham, NC 27708, USA |
This paper investigates the global existence of weak solutions for the incompressible $ p $-Navier-Stokes equations in $ \mathbb{R}^d $ $ (2\leq d\leq p) $. The $ p $-Navier-Stokes equations are obtained by adding viscosity term to the $ p $-Euler equations. The diffusion added is represented by the $ p $-Laplacian of velocity and the $ p $-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-$ p $ distances with constraint density to be characteristic functions.
References:
[1] |
D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.
![]() |
[2] |
D. Breit,
Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.
doi: 10.1007/s00021-015-0203-z. |
[3] |
F. E. Browder,
Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.
doi: 10.1090/S0002-9904-1963-11068-X. |
[4] |
F. E. Browder,
Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.
doi: 10.2307/1970660. |
[5] |
X. Chen, A. Jüngel and J. -G Liu,
A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[6] |
X. Chen and J. -G Liu,
Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.
doi: 10.1016/j.jde.2013.01.005. |
[7] |
X. Chen and J.-G Liu,
Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.
doi: 10.1137/120887850. |
[8] |
K. Cheng, C. Wang and S. M. Wise,
An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.
doi: 10.4208/cicp.2019.js60.10. |
[9] |
W. Cong and J.-G. Liu,
A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.
doi: 10.3934/krm.2016012. |
[10] |
E. DiBenedetto and M. A. Herrero,
Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[11] |
M. Dreher and A. Jüngel,
Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.
doi: 10.1016/j.na.2011.12.004. |
[12] |
W. Feng, A. J. Salgado, C. Wang and S. M. Wise,
Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.
doi: 10.1016/j.jcp.2016.12.046. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. |
[14] |
P. Hartman and G. Stampacchia,
On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.
doi: 10.1007/BF02392210. |
[15] |
J. Leray and J.-L. Lions,
Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.
|
[16] |
L. Li and J.-G. Liu,
$p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.
doi: 10.1016/j.jde.2017.12.023. |
[17] |
E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001.
doi: 10.1090/gsm/014. |
[18] |
P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019.
doi: 10.1007/978-3-030-14501-9. |
[19] |
A. Matas and J. Merker,
Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.
doi: 10.1007/s10492-012-0004-0. |
[20] |
G. J. Minty,
On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.
doi: 10.1073/pnas.50.6.1038. |
[21] |
G. J. Minty,
Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.
doi: 10.1215/S0012-7094-62-02933-2. |
[22] |
J. Shen, C. Wang, X. Wang and S. M. Wise,
Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839. |
[23] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[24] |
C. Wang, X. Wang and S. M. Wise,
Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405. |
show all references
References:
[1] |
D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.
![]() |
[2] |
D. Breit,
Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.
doi: 10.1007/s00021-015-0203-z. |
[3] |
F. E. Browder,
Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.
doi: 10.1090/S0002-9904-1963-11068-X. |
[4] |
F. E. Browder,
Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.
doi: 10.2307/1970660. |
[5] |
X. Chen, A. Jüngel and J. -G Liu,
A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[6] |
X. Chen and J. -G Liu,
Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.
doi: 10.1016/j.jde.2013.01.005. |
[7] |
X. Chen and J.-G Liu,
Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.
doi: 10.1137/120887850. |
[8] |
K. Cheng, C. Wang and S. M. Wise,
An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.
doi: 10.4208/cicp.2019.js60.10. |
[9] |
W. Cong and J.-G. Liu,
A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.
doi: 10.3934/krm.2016012. |
[10] |
E. DiBenedetto and M. A. Herrero,
Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.
doi: 10.1007/BF00400111. |
[11] |
M. Dreher and A. Jüngel,
Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.
doi: 10.1016/j.na.2011.12.004. |
[12] |
W. Feng, A. J. Salgado, C. Wang and S. M. Wise,
Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.
doi: 10.1016/j.jcp.2016.12.046. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. |
[14] |
P. Hartman and G. Stampacchia,
On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.
doi: 10.1007/BF02392210. |
[15] |
J. Leray and J.-L. Lions,
Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.
|
[16] |
L. Li and J.-G. Liu,
$p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.
doi: 10.1016/j.jde.2017.12.023. |
[17] |
E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001.
doi: 10.1090/gsm/014. |
[18] |
P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019.
doi: 10.1007/978-3-030-14501-9. |
[19] |
A. Matas and J. Merker,
Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.
doi: 10.1007/s10492-012-0004-0. |
[20] |
G. J. Minty,
On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.
doi: 10.1073/pnas.50.6.1038. |
[21] |
G. J. Minty,
Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.
doi: 10.1215/S0012-7094-62-02933-2. |
[22] |
J. Shen, C. Wang, X. Wang and S. M. Wise,
Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839. |
[23] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[24] |
C. Wang, X. Wang and S. M. Wise,
Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[5] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[6] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[7] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[8] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[9] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[10] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[11] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[12] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[13] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[14] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[15] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[16] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[17] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[18] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[19] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[20] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]