This paper investigates the global existence of weak solutions for the incompressible $ p $-Navier-Stokes equations in $ \mathbb{R}^d $ $ (2\leq d\leq p) $. The $ p $-Navier-Stokes equations are obtained by adding viscosity term to the $ p $-Euler equations. The diffusion added is represented by the $ p $-Laplacian of velocity and the $ p $-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-$ p $ distances with constraint density to be characteristic functions.
Citation: |
[1] | D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017. |
[2] | D. Breit, Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326. doi: 10.1007/s00021-015-0203-z. |
[3] | F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874. doi: 10.1090/S0002-9904-1963-11068-X. |
[4] | F. E. Browder, Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523. doi: 10.2307/1970660. |
[5] | X. Chen, A. Jüngel and J. -G Liu, A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43. doi: 10.1007/s10440-013-9858-8. |
[6] | X. Chen and J. -G Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802. doi: 10.1016/j.jde.2013.01.005. |
[7] | X. Chen and J.-G Liu, Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215. doi: 10.1137/120887850. |
[8] | K. Cheng, C. Wang and S. M. Wise, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364. doi: 10.4208/cicp.2019.js60.10. |
[9] | W. Cong and J.-G. Liu, A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714. doi: 10.3934/krm.2016012. |
[10] | E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290. doi: 10.1007/BF00400111. |
[11] | M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077. doi: 10.1016/j.na.2011.12.004. |
[12] | W. Feng, A. J. Salgado, C. Wang and S. M. Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67. doi: 10.1016/j.jcp.2016.12.046. |
[13] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. |
[14] | P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310. doi: 10.1007/BF02392210. |
[15] | J. Leray and J.-L. Lions, Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107. |
[16] | L. Li and J.-G. Liu, $p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748. doi: 10.1016/j.jde.2017.12.023. |
[17] | E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001. doi: 10.1090/gsm/014. |
[18] | P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019. doi: 10.1007/978-3-030-14501-9. |
[19] | A. Matas and J. Merker, Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69. doi: 10.1007/s10492-012-0004-0. |
[20] | G. J. Minty, On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041. doi: 10.1073/pnas.50.6.1038. |
[21] | G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346. doi: 10.1215/S0012-7094-62-02933-2. |
[22] | J. Shen, C. Wang, X. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125. doi: 10.1137/110822839. |
[23] | J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360. |
[24] | C. Wang, X. Wang and S. M. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423. doi: 10.3934/dcds.2010.28.405. |