doi: 10.3934/dcdsb.2021051
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence of global weak solutions of $ p $-Navier-Stokes equations

1. 

Department of Mathematics and Department of Physics, Duke University, Durham, NC 27708, USA

2. 

School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China, and, Department of Physics, Duke University, Durham, NC 27708, USA

* Corresponding author: Zhaoyun Zhang

Received  November 2020 Revised  January 2021 Early access February 2021

This paper investigates the global existence of weak solutions for the incompressible $ p $-Navier-Stokes equations in $ \mathbb{R}^d $ $ (2\leq d\leq p) $. The $ p $-Navier-Stokes equations are obtained by adding viscosity term to the $ p $-Euler equations. The diffusion added is represented by the $ p $-Laplacian of velocity and the $ p $-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-$ p $ distances with constraint density to be characteristic functions.

Citation: Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021051
References:
[1] D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.   Google Scholar
[2]

D. Breit, Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.  doi: 10.1007/s00021-015-0203-z.  Google Scholar

[3]

F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.  doi: 10.1090/S0002-9904-1963-11068-X.  Google Scholar

[4]

F. E. Browder, Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.  doi: 10.2307/1970660.  Google Scholar

[5]

X. ChenA. Jüngel and J. -G Liu, A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.  doi: 10.1007/s10440-013-9858-8.  Google Scholar

[6]

X. Chen and J. -G Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.  doi: 10.1016/j.jde.2013.01.005.  Google Scholar

[7]

X. Chen and J.-G Liu, Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.  doi: 10.1137/120887850.  Google Scholar

[8]

K. ChengC. Wang and S. M. Wise, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.  doi: 10.4208/cicp.2019.js60.10.  Google Scholar

[9]

W. Cong and J.-G. Liu, A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.  doi: 10.3934/krm.2016012.  Google Scholar

[10]

E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.  doi: 10.1007/BF00400111.  Google Scholar

[11]

M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.  doi: 10.1016/j.na.2011.12.004.  Google Scholar

[12]

W. FengA. J. SalgadoC. Wang and S. M. Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.  doi: 10.1016/j.jcp.2016.12.046.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.  Google Scholar

[14]

P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.  doi: 10.1007/BF02392210.  Google Scholar

[15]

J. Leray and J.-L. Lions, Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.   Google Scholar

[16]

L. Li and J.-G. Liu, $p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.  doi: 10.1016/j.jde.2017.12.023.  Google Scholar

[17]

E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[18]

P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019. doi: 10.1007/978-3-030-14501-9.  Google Scholar

[19]

A. Matas and J. Merker, Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.  doi: 10.1007/s10492-012-0004-0.  Google Scholar

[20]

G. J. Minty, On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.  doi: 10.1073/pnas.50.6.1038.  Google Scholar

[21]

G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.  doi: 10.1215/S0012-7094-62-02933-2.  Google Scholar

[22]

J. ShenC. WangX. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.  doi: 10.1137/110822839.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

C. WangX. Wang and S. M. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.  doi: 10.3934/dcds.2010.28.405.  Google Scholar

show all references

References:
[1] D. Breit, Existence Theory for Generalized Newtonian Fluids, Academic Press, 2017.   Google Scholar
[2]

D. Breit, Existence theory for stochastic power law fluids, J. Math. Fluid. Mech., 17 (2015), 295-326.  doi: 10.1007/s00021-015-0203-z.  Google Scholar

[3]

F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862-874.  doi: 10.1090/S0002-9904-1963-11068-X.  Google Scholar

[4]

F. E. Browder, Non-linear equations of evolution, Ann. of Math., 80 (1964), 485-523.  doi: 10.2307/1970660.  Google Scholar

[5]

X. ChenA. Jüngel and J. -G Liu, A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.  doi: 10.1007/s10440-013-9858-8.  Google Scholar

[6]

X. Chen and J. -G Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions, J. Differential Equations., 254 (2013), 2764-2802.  doi: 10.1016/j.jde.2013.01.005.  Google Scholar

[7]

X. Chen and J.-G Liu, Analysis of polymeric flow models and related compactness theorems in weighted spaces, SIAM J. Math. Anal., 45 (2013), 1179-1215.  doi: 10.1137/120887850.  Google Scholar

[8]

K. ChengC. Wang and S. M. Wise, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), 1335-1364.  doi: 10.4208/cicp.2019.js60.10.  Google Scholar

[9]

W. Cong and J.-G. Liu, A degenerate $p$-Laplacian Keller-Segel model, Kinet. Relat. Models., 9 (2016), 687-714.  doi: 10.3934/krm.2016012.  Google Scholar

[10]

E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 <p<2$, Arch. Rational Mech. Anal., 111 (1990), 225-290.  doi: 10.1007/BF00400111.  Google Scholar

[11]

M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0, T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.  doi: 10.1016/j.na.2011.12.004.  Google Scholar

[12]

W. FengA. J. SalgadoC. Wang and S. M. Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45-67.  doi: 10.1016/j.jcp.2016.12.046.  Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.  Google Scholar

[14]

P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310.  doi: 10.1007/BF02392210.  Google Scholar

[15]

J. Leray and J.-L. Lions, Quelques résultats de Vi$\check{s}$ik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France., 93 (1965), 97-107.   Google Scholar

[16]

L. Li and J.-G. Liu, $p$-Euler equations and $p$-Navier-Stokes equations, J. Differential Equations., 264 (2018), 4707-4748.  doi: 10.1016/j.jde.2017.12.023.  Google Scholar

[17]

E. H. Lieb and M. Loss, Analysis, American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[18]

P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, Springer Briefs in Mathematics, Springer, 2019. doi: 10.1007/978-3-030-14501-9.  Google Scholar

[19]

A. Matas and J. Merker, Existence of weak solutions to doubly degenerate diffusion equations, Appl. Math., 57 (2012), 43-69.  doi: 10.1007/s10492-012-0004-0.  Google Scholar

[20]

G. J. Minty, On a monotonicity method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038-1041.  doi: 10.1073/pnas.50.6.1038.  Google Scholar

[21]

G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.  doi: 10.1215/S0012-7094-62-02933-2.  Google Scholar

[22]

J. ShenC. WangX. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.  doi: 10.1137/110822839.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[24]

C. WangX. Wang and S. M. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.  doi: 10.3934/dcds.2010.28.405.  Google Scholar

[1]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[2]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[3]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[4]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[5]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2117-2138. doi: 10.3934/cpaa.2021060

[6]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[7]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[8]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[9]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[10]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[11]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[12]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[13]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[14]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[15]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[16]

Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, , () : -. doi: 10.3934/era.2021050

[17]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[18]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[19]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[20]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

2020 Impact Factor: 1.327

Article outline

[Back to Top]