• Previous Article
    A stochastic differential equation SIS epidemic model with regime switching
  • DCDS-B Home
  • This Issue
  • Next Article
    Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination
doi: 10.3934/dcdsb.2021055

Stabilization by intermittent control for hybrid stochastic differential delay equations

1. 

School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, 210013, China

2. 

College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China

3. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

4. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, U.K

* Corresponding author: Liangjian Hu

Received  August 2020 Revised  January 2021 Published  February 2021

Fund Project: The research of W.Mao was supported by the National Natural Science Foundation of China(11401261), "333 High-level Project" of Jiangsu Province and the Qing Lan Project of Jiangsu Province. The research of L.Hu was supported by the National Natural Science Foundation of China (11471071). The research of X.Mao was supported by the Leverhulme Trust (RF-2015-385), the Royal Society (WM160014, Royal Society Wolfson Research Merit Award), the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship), the EPSRC (EP/K503174/1)

This paper is concerned with stablization of hybrid differential equations by intermittent control based on delay observations. By M-matrix theory and intermittent control strategy, we establish a sufficient stability criterion on intermittent hybrid stochastic differential equations. Meantime, we show that hybrid differential equations can be stabilized by intermittent control based on delay observations if the delay time $ \tau $ is bounded by $ \tau^* $. Finally, an example is presented to illustrate our theory.

Citation: Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021055
References:
[1]

J. A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Trans. Automat. Control., 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[2]

J. A. D. Appleby and X. Mao, Stochastic stabilization of functional differential equations, Syst. Control. Lett., 54 (2005), 1069-1081.  doi: 10.1016/j.sysconle.2005.03.003.  Google Scholar

[3]

L. ArnoldH. Crauel and V. Wihstutz, Stabilization of linear systems by noise, SIAM J. Control Optim., 21 (1983), 451-461.  doi: 10.1137/0321027.  Google Scholar

[4]

T. CaraballoM. J. Garrido-Atienza and J. Real, Stochastic stabilization of differential systems with general decay rate, Syst. Control. Lett., 48 (2003), 397-406.  doi: 10.1016/S0167-6911(02)00293-1.  Google Scholar

[5]

W. ChenS. Xu and Y. Zou, Stabilization of hybrid neutral stochastic differential delay equations by delay feedback control, Syst. Control. Lett., 88 (2016), 1-13.  doi: 10.1016/j.sysconle.2015.04.004.  Google Scholar

[6]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica., 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[7]

R. Z. Has'minskiǐ, Stochastic Stability of Differential Equations, Sithoff Noordhoff, Alphen aan den Rijn, Netherlands., 1980.  Google Scholar

[8]

J. HuW. LiuF. Deng and X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735-754.  doi: 10.1137/19M1270240.  Google Scholar

[9]

X. Li and X. Mao, Stabilisation of highly nonlinear hybrid stochastic differential delay equations by delay feedback control, Automatica., 112 (2020), 108657. doi: 10.1016/j.automatica.2019.108657.  Google Scholar

[10]

L. LiuM. Perc and J. Cao, Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control, Science in China Information Sciences., 62 (2019), 1-13.  doi: 10.1007/s11432-018-9600-3.  Google Scholar

[11]

L. Liu and Z. Wu, Intermittent stochastic stabilization based on discrete-time observation with time delay, Syst. Control. Lett., 137 (2020), 1-11.  doi: 10.1016/j.sysconle.2020.104626.  Google Scholar

[12]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London., (2006). doi: 10.1142/p473.  Google Scholar

[13]

X. MaoG. G. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica., 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[14]

X. Mao, Stochastic stabilisation and destabilisation, Syst. Control. Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[15]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, Syst. Control. Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[16]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Trans. Automat. Control., 61 (2016), 1619-1624. doi: 10.1109/TAC.2015.2471696.  Google Scholar

[17]

Y. Ren and W. Yin, Quasi sure exponential stabilization of nonlinear systems via intermittent G-Brownian motion, Discret. Contin. Dyn. Syst. Ser. B., 24 (2019), 5871-5883.  doi: 10.3934/dcdsb.2019110.  Google Scholar

[18]

Y. RenW. Yin and R. Sakthivel, Stabilization of stochastic differential equations driven by G-Brownian motion with feedback control based on discrete-Time state observation, Automatica., 95 (2018), 146-151.  doi: 10.1016/j.automatica.2018.05.039.  Google Scholar

[19]

M. Scheutzow, Stabilization and destabilization by noise in the plane, Stocha. Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[20]

F. Wu and S. Hu, Suppression and stabilisation of noise, Int. J. Control., 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[21]

F. Wu and S. Hu, Stochastic Suppression and stabilization of delay differential systems, Int. J. Robust. Nonlin. Control., 21 (2011), 488-500.  doi: 10.1002/rnc.1606.  Google Scholar

[22]

G. YinG. Zhao and F. Wu, Regularization and stabilization of randomly switching dynamic systems, SIAM. J. Appl. Math., 72 (2012), 1361-1382.  doi: 10.1137/110851171.  Google Scholar

[23]

W. YinJ. Cao and Y. Ren, Quasi-sure exponential stabilization of stochastic systems induced by G-Brownian motion with discrete time feedback control, J. Math, Anal. Appl., 474 (2019), 276-289.  doi: 10.1016/j.jmaa.2019.01.045.  Google Scholar

[24]

W. Yin and J. Cao, Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps, Discrete Contin. Dyn. Syst. Ser. B., 25 (2020), 4493-4513. doi: 10.3934/dcdsb.2020109.  Google Scholar

[25]

C. Yuan and J. Lygeros, Stabilization of a class of stochastic differential equations with Markovian switching, Syst. Control. Lett., 54 (2005), 819-833.  doi: 10.1016/j.sysconle.2005.01.001.  Google Scholar

[26]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Frankl. Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[27]

X. Zong, F. Wu and G. Yin, Stochastic regularization and stabilization of hybrid functional differential equations, 2015 54th IEEE Conference on Decision and Control (CDC)., (2015), 1211–1216. doi: 10.1109/CDC.2015.7402376.  Google Scholar

show all references

References:
[1]

J. A. D. ApplebyX. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Trans. Automat. Control., 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[2]

J. A. D. Appleby and X. Mao, Stochastic stabilization of functional differential equations, Syst. Control. Lett., 54 (2005), 1069-1081.  doi: 10.1016/j.sysconle.2005.03.003.  Google Scholar

[3]

L. ArnoldH. Crauel and V. Wihstutz, Stabilization of linear systems by noise, SIAM J. Control Optim., 21 (1983), 451-461.  doi: 10.1137/0321027.  Google Scholar

[4]

T. CaraballoM. J. Garrido-Atienza and J. Real, Stochastic stabilization of differential systems with general decay rate, Syst. Control. Lett., 48 (2003), 397-406.  doi: 10.1016/S0167-6911(02)00293-1.  Google Scholar

[5]

W. ChenS. Xu and Y. Zou, Stabilization of hybrid neutral stochastic differential delay equations by delay feedback control, Syst. Control. Lett., 88 (2016), 1-13.  doi: 10.1016/j.sysconle.2015.04.004.  Google Scholar

[6]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica., 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[7]

R. Z. Has'minskiǐ, Stochastic Stability of Differential Equations, Sithoff Noordhoff, Alphen aan den Rijn, Netherlands., 1980.  Google Scholar

[8]

J. HuW. LiuF. Deng and X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735-754.  doi: 10.1137/19M1270240.  Google Scholar

[9]

X. Li and X. Mao, Stabilisation of highly nonlinear hybrid stochastic differential delay equations by delay feedback control, Automatica., 112 (2020), 108657. doi: 10.1016/j.automatica.2019.108657.  Google Scholar

[10]

L. LiuM. Perc and J. Cao, Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control, Science in China Information Sciences., 62 (2019), 1-13.  doi: 10.1007/s11432-018-9600-3.  Google Scholar

[11]

L. Liu and Z. Wu, Intermittent stochastic stabilization based on discrete-time observation with time delay, Syst. Control. Lett., 137 (2020), 1-11.  doi: 10.1016/j.sysconle.2020.104626.  Google Scholar

[12]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London., (2006). doi: 10.1142/p473.  Google Scholar

[13]

X. MaoG. G. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica., 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[14]

X. Mao, Stochastic stabilisation and destabilisation, Syst. Control. Lett., 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.  Google Scholar

[15]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, Syst. Control. Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[16]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Trans. Automat. Control., 61 (2016), 1619-1624. doi: 10.1109/TAC.2015.2471696.  Google Scholar

[17]

Y. Ren and W. Yin, Quasi sure exponential stabilization of nonlinear systems via intermittent G-Brownian motion, Discret. Contin. Dyn. Syst. Ser. B., 24 (2019), 5871-5883.  doi: 10.3934/dcdsb.2019110.  Google Scholar

[18]

Y. RenW. Yin and R. Sakthivel, Stabilization of stochastic differential equations driven by G-Brownian motion with feedback control based on discrete-Time state observation, Automatica., 95 (2018), 146-151.  doi: 10.1016/j.automatica.2018.05.039.  Google Scholar

[19]

M. Scheutzow, Stabilization and destabilization by noise in the plane, Stocha. Anal. Appl., 11 (1993), 97-113.  doi: 10.1080/07362999308809304.  Google Scholar

[20]

F. Wu and S. Hu, Suppression and stabilisation of noise, Int. J. Control., 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[21]

F. Wu and S. Hu, Stochastic Suppression and stabilization of delay differential systems, Int. J. Robust. Nonlin. Control., 21 (2011), 488-500.  doi: 10.1002/rnc.1606.  Google Scholar

[22]

G. YinG. Zhao and F. Wu, Regularization and stabilization of randomly switching dynamic systems, SIAM. J. Appl. Math., 72 (2012), 1361-1382.  doi: 10.1137/110851171.  Google Scholar

[23]

W. YinJ. Cao and Y. Ren, Quasi-sure exponential stabilization of stochastic systems induced by G-Brownian motion with discrete time feedback control, J. Math, Anal. Appl., 474 (2019), 276-289.  doi: 10.1016/j.jmaa.2019.01.045.  Google Scholar

[24]

W. Yin and J. Cao, Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps, Discrete Contin. Dyn. Syst. Ser. B., 25 (2020), 4493-4513. doi: 10.3934/dcdsb.2020109.  Google Scholar

[25]

C. Yuan and J. Lygeros, Stabilization of a class of stochastic differential equations with Markovian switching, Syst. Control. Lett., 54 (2005), 819-833.  doi: 10.1016/j.sysconle.2005.01.001.  Google Scholar

[26]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Frankl. Inst., 355 (2018), 3829-3852.  doi: 10.1016/j.jfranklin.2017.12.033.  Google Scholar

[27]

X. Zong, F. Wu and G. Yin, Stochastic regularization and stabilization of hybrid functional differential equations, 2015 54th IEEE Conference on Decision and Control (CDC)., (2015), 1211–1216. doi: 10.1109/CDC.2015.7402376.  Google Scholar

Figure 1.  The sample paths of the hybrid differential equations (21)
Figure 2.  The sample paths of the intermittently hybrid SDEs (22) with $ \theta = 0.95 $
Figure 3.  The sample paths of the intermittently hybrid SDDEs (23)
[1]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[2]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[3]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[4]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[5]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[6]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[7]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[11]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[12]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[13]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[14]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[15]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[16]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[17]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[18]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[19]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[20]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]