[1]
|
Q. An, E. Beretta, Y. Kuang, C. Wang and H. Wang, Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differential Equations, 266 (2019), 7073-7100.
doi: 10.1016/j.jde.2018.11.025.
|
[2]
|
M. Banerjee and E. Venturino, A phytoplankton-toxic phytoplankton-zooplankton model, Ecol. Complex., 8 (2011), 239-248.
doi: 10.1016/j.ecocom.2011.04.001.
|
[3]
|
E. Beretta and Y. Kuang, Geometric, stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086.
|
[4]
|
P. Bi and S. Ruan, Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Applied Dynamical Systems, 12 (2013), 1847-1888.
doi: 10.1137/120887898.
|
[5]
|
J. Chattopadhyay, R. Sarkar and S. Mandal, Toxin producing plankton may act as a biological control for planktonic blooms: A field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.
doi: 10.1006/jtbi.2001.2510.
|
[6]
|
J. Chattopadhyay, R. Sarkar and AE Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Appl. Math., 19 (2002), 137-161.
doi: 10.1093/imammb/19.2.137.
|
[7]
|
Y. Ding, W. Jiang and P. Yu, Double Hopf bifurcation in delayed vander pol-duffing equation, Internat. J. Bifur. Chaos, 23 (2013), 1350014, 15 pages.
doi: 10.1142/S0218127413500144.
|
[8]
|
K. Gu, S. Niculescu and J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), 231-253.
doi: 10.1016/j.jmaa.2005.02.034.
|
[9]
|
R. Han and B. Dai, Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response, Internat. J. Bifur. Chaos, 27 (2017), 1750088, 24 pages.
doi: 10.1142/S0218127417500882.
|
[10]
|
J. Hale and S. Lunel, Introduction to functional differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[11]
|
Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with
delay, Chaos, Solitons Fractals, 104 (2017), 693-704.
doi: 10.1016/j.chaos.2017.09.030.
|
[12]
|
Z. Jiang, W. Zhang, J. Zhang and T. Zhang, Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and Holling III functional response, Internat. J. Bifur. Chaos., 28 (2018), 1850162, 23 pages.
doi: 10.1142/S0218127418501626.
|
[13]
|
Z. Jiang, J. Dai and T. Zhang, Bifurcation analysis of phytoplankton and zooplanktoninteraction system with two delays, Internat. J. Bifur. Chaos, 30 (2020), 2050039, 21 pages.
doi: 10.1142/S021812742050039X.
|
[14]
|
H. Jiang and Y. Song, Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and
applications, Appl. Math. Comput., 266 (2015), 1102-1126.
doi: 10.1016/j.amc.2015.06.015.
|
[15]
|
Z. Jiang and L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Internat. J. Bifur. Chaos, 27 (2017), 1750108, 15 pages.
doi: 10.1142/S0218127417501085.
|
[16]
|
Z. Jiang and Y. Guo, Hopf bifurcation and stability crossing curvein a planktonic resource-consumer system with double delays, Internat. J. Bifur. Chaos, 30 (2020), 2050190, 20 pages.
doi: 10.1142/S0218127420501904.
|
[17]
|
S. Ma, Q. Lu and Z. Feng, Double Hopf bifurcation for van der pol-duffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 338 (2008), 993-1007.
doi: 10.1016/j.jmaa.2007.05.072.
|
[18]
|
R. Pal, D. Basu and M. Banerjee, Modelling of phytoplankton allelopathy with
Monod-Haldanetype functional response–A mathematical study, Biosystems, 95 (2009), 243-253.
doi: 10.1016/j.biosystems.2008.11.002.
|
[19]
|
Y. Qu, J. Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell
dynamics with multiple delays, Physica D., 239 (2010), 2011-2024.
doi: 10.1016/j.physd.2010.07.013.
|
[20]
|
S. Roy, S. Bhattacharya, P. Das and J. Chattopadhyay, Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton:
Inferences from field observations, J. Biol. Phys., 33 (2007), 1-17.
doi: 10.1007/s10867-007-9038-z.
|
[21]
|
J. Wu, Symmetric functional differential equations and neural networks with
memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.
doi: 10.1090/S0002-9947-98-02083-2.
|