• Previous Article
    Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation
  • DCDS-B Home
  • This Issue
  • Next Article
    Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control
doi: 10.3934/dcdsb.2021061

Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod-Haldane functional response

1. 

School of Liberal Arts and Sciences, North China Institute of Aerospace Engineering, Langfang, 065000, China

2. 

283 Company, Second Research Institute of the CASIC, Beijing, 100089, China

3. 

Aerospace Science and Technology, North China Institute of Aerospace Engineering, Langfang, 065000, China

* Corresponding author: jzhsuper@163.com

Received  September 2020 Revised  January 2021 Published  February 2021

Fund Project: This research is supported by National Natural Science Foundation of China (No. 11801014), Natural Science Foundation of Hebei Province from China (No. A2018409004), University Discipline Top Talent Selection and Training Program of Hebei Province from China (No. SLRC2019020) and Graduate Student Demonstration Course Construction of Hebei Province from China (No. KCJSX2020093)

We structure a phytoplankton zooplankton interaction system by incorporating (i) Monod-Haldane type functional response function; (ii) two delays accounting, respectively, for the gestation delay $ \tau $ of the zooplankton and the time $ \tau_1 $ required for the maturity of TPP. Firstly, we give the existence of equilibrium and property of solutions. The global convergence to the boundary equilibrium is also derived under a certain criterion. Secondly, in the case without the maturity delay $ \tau_1 $, the gestation delay $ \tau $ may lead to stability switches of the positive equilibrium. Then fixed $ \tau $ in stable interval, the effect of $ \tau_1 $ is investigated and find $ \tau_1 $ can also cause the oscillation of system. Specially, when $ \tau = \tau_1 $, under certain conditions, the periodic solution will exist with the wide range as delay away from critical value. To deal with the local stability of the positive equilibrium under a general case with all delays being positive, we use the crossing curve methods, it can obtain the stable changes of positive equilibrium in $ (\tau, \tau_1) $ plane. When choosing $ \tau $ in the unstable interval, the system still can occur Hopf bifurcation, which extends the crossing curve methods to the system exponentially decayed delay-dependent coefficients. Some numerical simulations are given to indicate the correction of the theoretical analyses.

Citation: Zhichao Jiang, Zexian Zhang, Maoyan Jie. Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod-Haldane functional response. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021061
References:
[1]

Q. AnE. BerettaY. KuangC. Wang and H. Wang, Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differential Equations, 266 (2019), 7073-7100.  doi: 10.1016/j.jde.2018.11.025.  Google Scholar

[2]

M. Banerjee and E. Venturino, A phytoplankton-toxic phytoplankton-zooplankton model, Ecol. Complex., 8 (2011), 239-248.  doi: 10.1016/j.ecocom.2011.04.001.  Google Scholar

[3]

E. Beretta and Y. Kuang, Geometric, stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.  doi: 10.1137/S0036141000376086.  Google Scholar

[4]

P. Bi and S. Ruan, Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Applied Dynamical Systems, 12 (2013), 1847-1888.  doi: 10.1137/120887898.  Google Scholar

[5]

J. ChattopadhyayR. Sarkar and S. Mandal, Toxin producing plankton may act as a biological control for planktonic blooms: A field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.  doi: 10.1006/jtbi.2001.2510.  Google Scholar

[6]

J. ChattopadhyayR. Sarkar and AE Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Appl. Math., 19 (2002), 137-161.  doi: 10.1093/imammb/19.2.137.  Google Scholar

[7]

Y. Ding, W. Jiang and P. Yu, Double Hopf bifurcation in delayed vander pol-duffing equation, Internat. J. Bifur. Chaos, 23 (2013), 1350014, 15 pages. doi: 10.1142/S0218127413500144.  Google Scholar

[8]

K. GuS. Niculescu and J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), 231-253.  doi: 10.1016/j.jmaa.2005.02.034.  Google Scholar

[9]

R. Han and B. Dai, Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response, Internat. J. Bifur. Chaos, 27 (2017), 1750088, 24 pages. doi: 10.1142/S0218127417500882.  Google Scholar

[10]

J. Hale and S. Lunel, Introduction to functional differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[11]

Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay, Chaos, Solitons Fractals, 104 (2017), 693-704.  doi: 10.1016/j.chaos.2017.09.030.  Google Scholar

[12]

Z. Jiang, W. Zhang, J. Zhang and T. Zhang, Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and Holling III functional response, Internat. J. Bifur. Chaos., 28 (2018), 1850162, 23 pages. doi: 10.1142/S0218127418501626.  Google Scholar

[13]

Z. Jiang, J. Dai and T. Zhang, Bifurcation analysis of phytoplankton and zooplanktoninteraction system with two delays, Internat. J. Bifur. Chaos, 30 (2020), 2050039, 21 pages. doi: 10.1142/S021812742050039X.  Google Scholar

[14]

H. Jiang and Y. Song, Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications, Appl. Math. Comput., 266 (2015), 1102-1126.  doi: 10.1016/j.amc.2015.06.015.  Google Scholar

[15]

Z. Jiang and L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Internat. J. Bifur. Chaos, 27 (2017), 1750108, 15 pages. doi: 10.1142/S0218127417501085.  Google Scholar

[16]

Z. Jiang and Y. Guo, Hopf bifurcation and stability crossing curvein a planktonic resource-consumer system with double delays, Internat. J. Bifur. Chaos, 30 (2020), 2050190, 20 pages. doi: 10.1142/S0218127420501904.  Google Scholar

[17]

S. MaQ. Lu and Z. Feng, Double Hopf bifurcation for van der pol-duffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 338 (2008), 993-1007.  doi: 10.1016/j.jmaa.2007.05.072.  Google Scholar

[18]

R. PalD. Basu and M. Banerjee, Modelling of phytoplankton allelopathy with Monod-Haldanetype functional response–A mathematical study, Biosystems, 95 (2009), 243-253.  doi: 10.1016/j.biosystems.2008.11.002.  Google Scholar

[19]

Y. QuJ. Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays, Physica D., 239 (2010), 2011-2024.  doi: 10.1016/j.physd.2010.07.013.  Google Scholar

[20]

S. RoyS. BhattacharyaP. Das and J. Chattopadhyay, Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton: Inferences from field observations, J. Biol. Phys., 33 (2007), 1-17.  doi: 10.1007/s10867-007-9038-z.  Google Scholar

[21]

J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

show all references

References:
[1]

Q. AnE. BerettaY. KuangC. Wang and H. Wang, Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differential Equations, 266 (2019), 7073-7100.  doi: 10.1016/j.jde.2018.11.025.  Google Scholar

[2]

M. Banerjee and E. Venturino, A phytoplankton-toxic phytoplankton-zooplankton model, Ecol. Complex., 8 (2011), 239-248.  doi: 10.1016/j.ecocom.2011.04.001.  Google Scholar

[3]

E. Beretta and Y. Kuang, Geometric, stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.  doi: 10.1137/S0036141000376086.  Google Scholar

[4]

P. Bi and S. Ruan, Bifurcations in delay differential equations and applications to tumor and immune system interaction models, SIAM J. Applied Dynamical Systems, 12 (2013), 1847-1888.  doi: 10.1137/120887898.  Google Scholar

[5]

J. ChattopadhyayR. Sarkar and S. Mandal, Toxin producing plankton may act as a biological control for planktonic blooms: A field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.  doi: 10.1006/jtbi.2001.2510.  Google Scholar

[6]

J. ChattopadhyayR. Sarkar and AE Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Appl. Math., 19 (2002), 137-161.  doi: 10.1093/imammb/19.2.137.  Google Scholar

[7]

Y. Ding, W. Jiang and P. Yu, Double Hopf bifurcation in delayed vander pol-duffing equation, Internat. J. Bifur. Chaos, 23 (2013), 1350014, 15 pages. doi: 10.1142/S0218127413500144.  Google Scholar

[8]

K. GuS. Niculescu and J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), 231-253.  doi: 10.1016/j.jmaa.2005.02.034.  Google Scholar

[9]

R. Han and B. Dai, Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response, Internat. J. Bifur. Chaos, 27 (2017), 1750088, 24 pages. doi: 10.1142/S0218127417500882.  Google Scholar

[10]

J. Hale and S. Lunel, Introduction to functional differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[11]

Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay, Chaos, Solitons Fractals, 104 (2017), 693-704.  doi: 10.1016/j.chaos.2017.09.030.  Google Scholar

[12]

Z. Jiang, W. Zhang, J. Zhang and T. Zhang, Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and Holling III functional response, Internat. J. Bifur. Chaos., 28 (2018), 1850162, 23 pages. doi: 10.1142/S0218127418501626.  Google Scholar

[13]

Z. Jiang, J. Dai and T. Zhang, Bifurcation analysis of phytoplankton and zooplanktoninteraction system with two delays, Internat. J. Bifur. Chaos, 30 (2020), 2050039, 21 pages. doi: 10.1142/S021812742050039X.  Google Scholar

[14]

H. Jiang and Y. Song, Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications, Appl. Math. Comput., 266 (2015), 1102-1126.  doi: 10.1016/j.amc.2015.06.015.  Google Scholar

[15]

Z. Jiang and L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Internat. J. Bifur. Chaos, 27 (2017), 1750108, 15 pages. doi: 10.1142/S0218127417501085.  Google Scholar

[16]

Z. Jiang and Y. Guo, Hopf bifurcation and stability crossing curvein a planktonic resource-consumer system with double delays, Internat. J. Bifur. Chaos, 30 (2020), 2050190, 20 pages. doi: 10.1142/S0218127420501904.  Google Scholar

[17]

S. MaQ. Lu and Z. Feng, Double Hopf bifurcation for van der pol-duffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 338 (2008), 993-1007.  doi: 10.1016/j.jmaa.2007.05.072.  Google Scholar

[18]

R. PalD. Basu and M. Banerjee, Modelling of phytoplankton allelopathy with Monod-Haldanetype functional response–A mathematical study, Biosystems, 95 (2009), 243-253.  doi: 10.1016/j.biosystems.2008.11.002.  Google Scholar

[19]

Y. QuJ. Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays, Physica D., 239 (2010), 2011-2024.  doi: 10.1016/j.physd.2010.07.013.  Google Scholar

[20]

S. RoyS. BhattacharyaP. Das and J. Chattopadhyay, Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton: Inferences from field observations, J. Biol. Phys., 33 (2007), 1-17.  doi: 10.1007/s10867-007-9038-z.  Google Scholar

[21]

J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

Figure 1.  The plots of TPP and zooplankton at equilibrium versus $ R_\tau $ when $ r = 0.8, m = 10, \alpha = 5 $ and $ L = 6 $. There is a forward bifurcation from the zooplankton free equilibrium at $ R_\tau = 1.1333 $
Figure 2.  The figures of TPP and zooplankton at equilibrium versus $ R_\tau $ when $ r = 0.3, m = 3, \alpha = 0.8, $ and $ L = 10 $. There is a backward bifurcation at $ R_\tau = 1.8167 $, which leads to the existence of multiple positive equilibria
Figure 3.  $ (\tau, \mathcal{S}_{n}(\tau))\; (n = 0, 1) $ plots
Figure 4.  $ E^* $ is stable when $ \tau = 30 $
Figure 5.  $ E^* $ is unstable when $ \tau = 54.4 $ and there exists a stable periodic solution
Figure 6.  $ E^* $ is still stable when $ \tau = 200 $
Figure 7.  $ E^* $ is stable when $ \tau = 30 $ and $ \tau_1 = 5 $
Figure 8.  $ (\nu, \mathbf{T}_n(\nu)) $ plots $ (n = 0, 1, 2) $
Figure 9.  $ E^* $ is stable for (A) and (C). $ E^* $ is unstable and there exists a stable periodic solution for (B). The bifurcation diagram showing stability switches at $ E^* $ and all global Hopf bifurcations shown in (D)
Figure 10.  Feasible region and curve $ C $ in $ (\tau, \omega) $ plane
Figure 11.  Crossing curves and crossing directions
Figure 12.  $ E^* $ is stable when $ \tau = 20 $ and $ \tau_1 = 10 $
Figure 13.  $ E^* $ is unstable and there exists a stable periodic solution when $ \tau = 80 $ and $ \tau_1 = 10 $
Figure 14.  $ E^* $ is stable when $ \tau = 180 $ and $ \tau_1 = 10 $
Table 1.  Descriptions and units of parameters of system (2)
Symbol Parameter Definition Unit
$ r $ Intrinsic growth rate of TPP day$ ^{-1} $
$ L $ Environmental carrying capacity $ g C m^{-3} $
$ \alpha $ Grazing efficiency of zooplankton day$ ^{-1}g C m^{-3} $
$ \beta $ Growth efficiency of zooplankton day$ ^{-1}g C m^{-3} $
$ \mu $ Natural death rate of zooplankton day$ ^{-1} $
$ m $ Half-saturation constant $ [g C m^{-3}]^2 $
$ \rho $ Toxin-producing rate of TPP $ g C m^{-3} $ day$ ^{-1} $
$ \tau $ Gestation delay of zooplankton day$ ^{-1} $
$ \tau_1 $ Delay required for the maturity of TPP day$ ^{-1} $
Symbol Parameter Definition Unit
$ r $ Intrinsic growth rate of TPP day$ ^{-1} $
$ L $ Environmental carrying capacity $ g C m^{-3} $
$ \alpha $ Grazing efficiency of zooplankton day$ ^{-1}g C m^{-3} $
$ \beta $ Growth efficiency of zooplankton day$ ^{-1}g C m^{-3} $
$ \mu $ Natural death rate of zooplankton day$ ^{-1} $
$ m $ Half-saturation constant $ [g C m^{-3}]^2 $
$ \rho $ Toxin-producing rate of TPP $ g C m^{-3} $ day$ ^{-1} $
$ \tau $ Gestation delay of zooplankton day$ ^{-1} $
$ \tau_1 $ Delay required for the maturity of TPP day$ ^{-1} $
[1]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[2]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[3]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[5]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023

[8]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[9]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[10]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[11]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[12]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[13]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[14]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[15]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[16]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[17]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[18]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[19]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[20]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]